diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /542/CH8 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '542/CH8')
-rwxr-xr-x | 542/CH8/EX8.2/Example_8_2.sci | 27 | ||||
-rwxr-xr-x | 542/CH8/EX8.3/Example_8_3.sci | 64 |
2 files changed, 91 insertions, 0 deletions
diff --git a/542/CH8/EX8.2/Example_8_2.sci b/542/CH8/EX8.2/Example_8_2.sci new file mode 100755 index 000000000..c4d187e29 --- /dev/null +++ b/542/CH8/EX8.2/Example_8_2.sci @@ -0,0 +1,27 @@ +clear;
+clc;
+printf("\n Example 8.2");
+
+//From the gel polarisation model:
+ //J = (1/A)(dV/dt) = hD ln(Cg/Cf)
+ //Cf = Co(Vo/V)
+ //where Co and Vo are the initial concentration and volume,respectively and Cf and V are the values at subsequent times
+ //Combining these eq gives
+ //dV/dt = A(hDln(Cg/Co)-hDln(Vo/V))
+V = [10 5 3 2 1];
+y = [9.90 13.64 18.92 27.30 112.40];
+plot(V,y)
+xtitle("Area under the curve is 184.4","Volume(m^3)","(J - hDln(Vo/V))^(-1)")
+
+
+//(b)
+Jo = 0.04*log(250/20);
+printf("\n Jo = %.3f m/h",Jo);
+Jf = 0.04*log(250/200);
+printf("\n Jf = %f m/h",Jf);
+Jav = Jf + 0.27*(0.101-0.008);
+printf("\n Jav = %f m/h",Jav);
+//For the removal of 9m^3 filtrate in 4 hours
+Area = (9/4)/Jav;
+printf("\n Area = %fm^2",Area);
+
diff --git a/542/CH8/EX8.3/Example_8_3.sci b/542/CH8/EX8.3/Example_8_3.sci new file mode 100755 index 000000000..b771af109 --- /dev/null +++ b/542/CH8/EX8.3/Example_8_3.sci @@ -0,0 +1,64 @@ +clear;
+clc;
+printf("\n Example 8.3");
+//It is assumed that Q0 is the volumetric flowrate of feed
+// Q2 the volumetric flowrate of concentrate
+//C0 the solute concentration in the feed
+// C2 the solute concentration in the concentrate
+// F the volumetric flowrate of membrane permeate
+// A the required membrane area.
+// It is also assumed that there is no loss of solute through the membrane.
+Cl = 3;
+while 1
+ Clnew = Cl -(0.04-0.02*log(30/Cl))/(Cl^(-1)/50);
+ if Clnew == Cl then
+ break;
+ end
+ Cl = Clnew;
+end
+ printf("\n Cl = %d kg/m^3",Cl);
+printf("\n below this concentration the membrane flux is 0.04 m/h");
+
+//This does not pose a constraint for the single stage as the concentration of solute C2 will be that of the final concentrate, 20 kg/m3.
+//Conservation of solute gives:QoCo = Q2C2
+//A fluid balance gives : Qo = F + Q2
+//Combining these eq and substituting Known values:
+A = (2.438/0.02)/log(30/20);
+printf("\n A = %d m^2",A);
+//The tubular membranes to be used are available as 30 m^2modules.
+printf("\n the no of required modules are %d ",A/30);
+
+//Part(b)
+
+//Conservation of solute gives = QoCo = Q1C1 = Q2C2
+//A fluid balance on stage 2 gives Q1 = Q2 + F2
+//A fluid balance on stage 2 gives Q1 = Q2 +F2
+//Substituting given values in above eqns
+//2.5 = 1.25/C1 + 0.02A1ln(30/C1)
+function[A1]=a(C1)
+ A1 = (2.5-1.25/C1)/(0.02*log(30/C1));
+ funcprot(0);
+endfunction
+function[A2]=b(C1)
+ A2 = (1.25/C1 - 0.0625)/0.00811
+ funcprot(0);
+endfunction
+
+printf("\n The procedure is to use trial and error to estimate the value of C1 that gives the optimum values of A1 and A2");
+printf("\n If C1 = 5kg/m^3 then A1 = %d m^2 and A2 = %d m^2",a(5),b(5));
+printf("\n an arrangement of 3 modules −1 module is required.");
+printf("\n\n\n If C1 = 4 kg/m^3 then A1 = %dm^2 and A2 = %dm^2",a(4),b(4));
+printf("\n an arrangement of 2 modules −1 module is almost sufficient.");
+printf("\n\n\n If C1 = 4.5 kg/m^3 then A1 = %dm^2 and A2 = %d m^2",a(4.5),b(4.5));
+printf("\n an arrangement of 2 modules −1 module which meets the requirement");
+printf("\n\n This arrangement requires the minimum number of modules.");
+
+
+
+
+
+
+
+
+
+
|