summaryrefslogtreecommitdiff
path: root/530/CH2/EX2.2
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /530/CH2/EX2.2
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '530/CH2/EX2.2')
-rwxr-xr-x530/CH2/EX2.2/example_2_2.sce35
1 files changed, 35 insertions, 0 deletions
diff --git a/530/CH2/EX2.2/example_2_2.sce b/530/CH2/EX2.2/example_2_2.sce
new file mode 100755
index 000000000..a600dd258
--- /dev/null
+++ b/530/CH2/EX2.2/example_2_2.sce
@@ -0,0 +1,35 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 2
+// Heat Conduction in Solids
+
+// Example 2.2
+// Page 31
+printf("Example 2.2, Page 31 \n\n")
+
+d_i=0.02; // [m] inner radius
+d_o=0.04; // [m] outer radius
+r_i=d_i/2; // [m] inner radius
+r_o=d_o/2; // [m] outer radius
+k=0.58; // [w/m K] thermal conductivity of tube material
+t_i=70; //[degree C]
+t_o=100; // [degree C]
+l=1; // [m] per unit length
+
+// thermal resistance of tube per unit length
+R_th_tube=(log(r_o/r_i))/(2*%pi*k*l); // [K/W]
+
+//from table 1.3 , heat transfer co-efficient for condensing steam may be taken as
+h=5000; // [W/m^2 K]
+// thermal resistance of condensing steam per unit length
+R_th_cond=1/(%pi*d_o*l*h);
+
+// since R_th_tube is much less than R_th_cond , we can assume outer surface to be at 100 degree C
+//hence heat flow rate per unit meter is
+q=l*2*(%pi)*k*(t_i-100)/log(r_o/r_i);
+
+printf("Thermal resistance of tube per unit length is %f K/W\n",R_th_tube);
+printf("Thermal resistance of condensing steam per unit length is %f K/W\n",R_th_cond);
+printf("Heat flow per unit length is %f W/m",q); \ No newline at end of file