summaryrefslogtreecommitdiff
path: root/51/DEPENDENCIES
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /51/DEPENDENCIES
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '51/DEPENDENCIES')
-rwxr-xr-x51/DEPENDENCIES/10_2.sce27
-rwxr-xr-x51/DEPENDENCIES/6_10.sce25
-rwxr-xr-x51/DEPENDENCIES/6_7.sce22
-rwxr-xr-x51/DEPENDENCIES/7_6.sce17
-rwxr-xr-x51/DEPENDENCIES/8_12.sce19
-rwxr-xr-x51/DEPENDENCIES/8_13.sce27
-rwxr-xr-x51/DEPENDENCIES/8_3.sce22
-rwxr-xr-x51/DEPENDENCIES/8_4.sce25
-rwxr-xr-x51/DEPENDENCIES/8_6.sce25
-rwxr-xr-x51/DEPENDENCIES/8_8.sce75
-rwxr-xr-x51/DEPENDENCIES/8_9.sce16
-rwxr-xr-x51/DEPENDENCIES/9_10.sce15
-rwxr-xr-x51/DEPENDENCIES/9_7.sce16
13 files changed, 331 insertions, 0 deletions
diff --git a/51/DEPENDENCIES/10_2.sce b/51/DEPENDENCIES/10_2.sce
new file mode 100755
index 000000000..ffc752ee4
--- /dev/null
+++ b/51/DEPENDENCIES/10_2.sce
@@ -0,0 +1,27 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\10_2data.sci");
+//bernoulli equation
+a=y1+((V1^2)/(2*32.2))+z1-z2;//ft; where a=y2+((V^2)/(2*g))
+//countinuity equation
+b=(y1*V1);//(ft^2/sec); where b=(y2*V2)
+c1=2*32.2;
+c2=(-c1)*a;
+c3=b^2;
+fn=poly([c3 0 c2 c1],"y2","c");
+y2=roots(fn);
+sum1=y2(3)+z2;//ft
+sum2=y2(1)+z2;//ft
+E1=y1+(c3/(y1^2));//ft
+Emin=3*((q^2)/(32.2^(1/3)))/2;//ft
+z=E1-Emin;//ft
+//using this value of z, the surface elevation is found to be sum1
+disp("ft",sum1,"The elevation of the water surface downstream of the ramp=")
+count=1;
+y=1:0.1:10;
+for i=1:0.1:10
+ E(count)=i+(c3/(i^2));
+ count=count+1;
+end
+plot2d(E,y,rect=[0,0,10,12])
+xtitle("y vs E","E","y")
diff --git a/51/DEPENDENCIES/6_10.sce b/51/DEPENDENCIES/6_10.sce
new file mode 100755
index 000000000..1c1e2909c
--- /dev/null
+++ b/51/DEPENDENCIES/6_10.sce
@@ -0,0 +1,25 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\6_10data.sci");
+V=Q/(1000000*%pi*((dia1/1000)^2)/4);//mean velocity, m/sec
+Re=(d*V*dia1/1000)/vis;
+disp(" is well below critical value of 2100 so flow is laminar.",Re,"a) The Reynolds number ")
+pdiff=(8*vis*(l)*(12/1000000)/(%pi*(dia1/2000)^4))/1000;//kPa
+disp("kPa",pdiff,"The pressure drop along a 1 m length of the tube which is far from the tube entrance so that the only component of velocity is parallel to the the tube axis=")
+//for flow in the annulus
+V1=Q/(1000000*%pi*(((dia1/1000)^2)-((dia2/1000)^2))/4);//mean velocity, m/sec
+Re1=d*((dia1-dia2)/1000)*V1/vis;
+disp(" is well below critical value of 2100 so flow is laminar.",Re1,"b) The Reynolds number ")
+r1=dia1/2000;
+r2=dia2/2000;
+pdiff1=((8*vis*(l)*(12/1000000)/(%pi))*((r1^4)-(r2^4)-((((r1^2)-(r2^2))^2)/(log(r1/r2))))^(-1))/1000;//kPa
+disp("kPa",pdiff1,"The pressure drop along a 1 m length of the symmetric annulus =")
+
+rratio=0.001:0.001:0.5;
+count=1;
+for i=0.001:0.001:0.5
+ pratio(count)=1/((i^4)*((1/(i^4))-1-((((1/(i^2))-1)^2)/log(1/i))));
+ count=count+1;
+end
+plot2d(rratio,pratio,rect=[0,0,0.5,8])
+xtitle("ri/ro vs pdiff(annulus)/pdiff(tube)","ri/ro","pdiff(annulus)/pdiff(tube)") \ No newline at end of file
diff --git a/51/DEPENDENCIES/6_7.sce b/51/DEPENDENCIES/6_7.sce
new file mode 100755
index 000000000..03fab17c1
--- /dev/null
+++ b/51/DEPENDENCIES/6_7.sce
@@ -0,0 +1,22 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\6_7data.sci");
+//V^2= (U^2)*(1 + (2*b*cos(ang)/r) + ((b^2)/(r^2)))
+//at point 2, ang=%pi/2
+//r=b*(%pi-ang)/sin(ang)=(%pi*b/2)
+V=U*(1+(4/(%pi^2)))^0.5;//mi/hr
+y2=h/2;//ft
+//bernoulli equation
+//p1-p2= d*((V2^2)-(V1^2)) + (sw*(y2-y1))
+V1=U*(5280/3600);
+V2=V*(5280/3600);
+pdiff=((d*((V2^2)-(V1^2))/2) + (d*32.2*(y2)))/144;//psi
+disp("mi/hr",V,"The magnitude of velocity at (2) for a 40 mi/hr approaching wind =")
+disp("psi",pdiff,"The pressure difference between points (1) and (2)=")
+u=0:100;
+
+for i=0:100
+ pd(i+1)= ((d*((((i*(1+(4/(%pi^2)))^0.5)*(5280/3600))^2)-((i*(5280/3600))^2))/2) + (d*32.2*(y2)))/144;
+end
+plot2d(u,pd,rect=[0,0,100,0.14])
+xtitle("(p1-p2) vs U","U,mph","p1-p2 ,psi") \ No newline at end of file
diff --git a/51/DEPENDENCIES/7_6.sce b/51/DEPENDENCIES/7_6.sce
new file mode 100755
index 000000000..ef31e2157
--- /dev/null
+++ b/51/DEPENDENCIES/7_6.sce
@@ -0,0 +1,17 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\7_6data.sci");
+//Rem=Re; hence (Vm*Dm/kvism)=(V*D/kvis); where kvis is kinematic viscosity
+//kvis=kvism; same fluid is used for model and prototype
+//(Vm/V)=(D/Dm)
+//Q=VA; hence Qm/Q = (Vm*Am)/(V*A)=(Dm/D)
+Qm=(Dm/12)*Q/D;//cfs
+disp("cfs",Qm,"The required flowrate in the model=")
+Drat=0.04:0.01:1;
+count=1;
+for i=0.04:0.01:1
+ Vrat(count)=1/i;
+ count=count+1;
+end
+plot2d(Drat,Vrat,rect=[0,0,1,25])
+xtitle("Vm/V vs Dm/D","Dm/D","Vm/V")
diff --git a/51/DEPENDENCIES/8_12.sce b/51/DEPENDENCIES/8_12.sce
new file mode 100755
index 000000000..62232c7ae
--- /dev/null
+++ b/51/DEPENDENCIES/8_12.sce
@@ -0,0 +1,19 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_12data.sci");
+d=0.00238;//slugs/(ft^3)
+vis=3.74*(10^(-7));//lb*sec/(ft^2)
+x=Q/(%pi/4);//where x =V*(D^2)
+//energy equation with z1=z2 and V1=V2
+y=l*d*(x^2)*0.5/(pd*144);//where y=(D^5)/f
+f=0.027;//using reynolds number, roughness and moody's chart
+D=(y*f)^(1/5);//ft
+disp("ft",D,"The diameter of the pipe should be =")
+q=0.01:0.01:3;
+count=1;
+for i=0.01:0.01:3
+ dia(count)=((l*d*((i/(%pi/4))^2)*0.5/(pd*144))*f)^(1/5);
+ count=count+1;
+end
+plot2d(q,dia,rect=[0,0,3,0.25])
+xtitle("D vs Q","Q, (ft^3)/sec","D, ft") \ No newline at end of file
diff --git a/51/DEPENDENCIES/8_13.sce b/51/DEPENDENCIES/8_13.sce
new file mode 100755
index 000000000..fcbbf8036
--- /dev/null
+++ b/51/DEPENDENCIES/8_13.sce
@@ -0,0 +1,27 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_13data.sci");
+x=Q/(%pi/4);//where x=V*(D^2)
+KLentrance=0.5;
+KLelbow=0.2;
+KLexit=1;
+//Finding f from Re, roughness and moody's chart
+f=0.01528;
+sumKL=(n*KLelbow)+KLentrance+KLexit;
+y=f*l;
+//V^2 = (x^2)/(D^4)
+//energy equation with p1=p2pV1=V2=z2=0
+z=(2*32.2*z1)/((x^2)*l);
+k=sumKL/l;
+fn=poly([(-f) (-k) 0 0 0 z],'D','c');
+r=roots(fn);
+disp("ft",r(1),"The diameter=")
+count=1;
+len=400:2000;
+for i=400:2000
+ root=roots(poly([(-f) (-(sumKL/i)) 0 0 0 ((2*32.2*z1)/((x^2)*i))],'a','c'));
+ dia(count)=root(1);
+ count=count+1;
+end
+plot2d(len,dia,rect=[0,0,2000,1.8])
+xtitle("D vs l","l, ft","D, ft")
diff --git a/51/DEPENDENCIES/8_3.sce b/51/DEPENDENCIES/8_3.sce
new file mode 100755
index 000000000..d9dfd22a5
--- /dev/null
+++ b/51/DEPENDENCIES/8_3.sce
@@ -0,0 +1,22 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_3data.sci");
+//Q=K*pdiff; where pdiff=p1-p2
+//hence K=%pi*(D^4)/(128*vis*l)
+count=1;
+for i=1:6
+ K(i)=(%pi*((D/12)^4))/(128*vis(i)*l);
+end
+plot2d(T,K,logflag='nl')
+xtitle("K vs T","T, degree F","K, (ft^5)/(lb.sec)")
+pdiff=(128*Q*vis(3)*l)/(%pi*((D/12)^4));//when temperature is 100 degree F
+disp("lb/(ft^2)",pdiff,"The pressure drop for the given Q and T =")
+V=Q/(%pi*((D/12)^2)/4);//ft/sec
+Re=d(3)*V*(D/12)/vis(3);
+disp("hence the flow is laminar",Re,"The reynolds number=")
+stress=pdiff*(D/12)/(4*l);//lb/(ft^2)
+disp("lb/(ft^2)",stress,"The wall stress for the given Q and T =")
+Fp=(%pi/4)*((D/12)^2)*pdiff;//lb
+Fv=(2*%pi)*((D/12)/2)*l*stress;//lb
+disp("lb",Fp,"The net pressure force =")
+disp("lb",Fv,"The net viscous/shear force =") \ No newline at end of file
diff --git a/51/DEPENDENCIES/8_4.sce b/51/DEPENDENCIES/8_4.sce
new file mode 100755
index 000000000..c8f32858a
--- /dev/null
+++ b/51/DEPENDENCIES/8_4.sce
@@ -0,0 +1,25 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_4data.sci");
+stress=D*(pgrad*1000)/(4*1);//N/(m^2)
+uf=(stress/d)^0.5;//m/sec; where uf is frictional velocity
+ts=5*kvis*1000/(uf);//mm; where ts is the thickness of the viscous sublayer
+disp("mm",ts,"The thickness of the viscous sublayer=")
+V=Q/(%pi*(D^2)/4);//m/s
+Re=V*D/kvis;
+disp("hence the flow is turbulent.",Re,"The reynolds number=")
+n=8.4;//from turbulent flow velocity profile diagram
+
+//Q=(%pi)*(R^2)*V
+R=1;//assumption
+//let Q/Vc=x
+x=integrate('((1-(r/R))^(1/n))*(2*%pi*r)','r',0,R);
+q=%pi*(R^2)*V;
+Vc=q/x;//m/s
+disp("m/s",Vc,"The approximate centerline velocity=")
+stress1=(2*stress*r)/D;//N/(m^2)
+//d(uavg)/dr=urate=-(Vc/(n*R))*((1-(r/R))^((1-n)/n)); where uavg=average velocity
+urate=-(Vc/(n*(D/2)))*((1-(r/(D/2)))^((1-n)/n));//s^(-1)
+stresslam=-(kvis*d*urate);//N/(m^2)
+stressratio=(stress1-stresslam)/stresslam;
+disp(stressratio,"The ratio of teh turbulent to laminar stress at a point midway between the centreline and the pipe wall =") \ No newline at end of file
diff --git a/51/DEPENDENCIES/8_6.sce b/51/DEPENDENCIES/8_6.sce
new file mode 100755
index 000000000..564ec06e1
--- /dev/null
+++ b/51/DEPENDENCIES/8_6.sce
@@ -0,0 +1,25 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_6data.sci");
+//minimum area is at location 5, hence max velocity is at 5
+c5=(1.4**1716*(460+59))^0.5;//ft/sec
+Ma5=V(5)/c5;
+//applying energy equation between locations 1 and 9
+//hL=hp=(p1-p9)/sw=pdiff/sw
+//Pa=sw*Q*hp=sw*A(5)*V(5)*hL
+KLcorner=0.2;
+KLdif=0.6;
+KLscr=4;
+hL=((KLcorner*(((V(7))^2)+((V(8))^2)+((V(2))^2)+((V(3))^2))) + (KLdif*(((V(6))^2))) + (KLcorner*((V(5))^2)) + (KLscr*((V(4))^2)))/(2*32.2);//ft
+Pa=0.0765*A(5)*V(5)*hL/550;//hp
+pdiff=0.0765*hL/144;//psi
+disp("psi",pdiff,"The value of (p1-p9)=")
+disp("hp",Pa,"The horsepower supplied to the fluid by the fan=")
+v=50:300;
+count=1;
+for i=50:300
+ power(count)=0.0765*((((KLcorner*((A(5)*i/A(7))^2)+((A(5)*i/(A(8)))^2)+((A(5)*i/A(2))^2)+((A(5)*i/A(3))^2))) + (KLdif*(((A(5)*i/A(6))^2))) + (KLcorner*((i)^2)) + (KLscr*((A(5)*i/A(4))^2)))/(2*32.2))*(A(5))*i/550;
+ count=count+1;
+end
+plot2d(v,power,rect=[0,0,300,250])
+xtitle("Pa vs V5","V5, ft/sec","Pa, hp")
diff --git a/51/DEPENDENCIES/8_8.sce b/51/DEPENDENCIES/8_8.sce
new file mode 100755
index 000000000..a1aa05fb8
--- /dev/null
+++ b/51/DEPENDENCIES/8_8.sce
@@ -0,0 +1,75 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_8data.sci");
+V1=Q/(%pi*(D^2)/4);//ft/sec
+V2=Q/(%pi*((Df/12)^2)/4);//ft/sec
+d=1.94;//slugs/ft
+vis=2.34/100000;//lb*sec/(ft^2)
+Re=d*V1*D/vis;
+disp("hence the flow is turbulent",Re,"The reynolds number =")
+//applying energy equation between points 1 and 2
+//when all head losses are excluded
+p1=(d*32.2*(l2+l4))+(0.5*d*((V2^2)-(V1^2)));//lb/(ft^2)
+disp("psi",p1/144,"a)The pressure at point 1 when all head losses are neglected=")
+//if major losses are included
+f=0.0215;
+hLmajor=f*(l1+l2+l3+l4+l5+l6)*(V1^2)/(D*2*32.2);
+p11=p1+(d*32.2*hLmajor);//lb/(ft^2)
+disp("psi",p11/144,"b)The pressure at point 1 when only major head losses are included=")
+//if major and minor losses are included
+KLelbow=1.5;
+KLvalve=10;
+KLfaucet=2;
+hLminor=(KLvalve+(4*KLelbow)+KLfaucet)*(V1^2)/(2*32.2);
+p12=p11+(d*32.2*hLminor);//lb/(ft^2)
+disp("psi",p12/144,"c)The pressure at point 1 when both major and minor head losses are included=")
+H=(p1/(32.2*1.94))+(V1*V1/(2*32.2));//ft
+dist=0:60;
+for i=0:15
+ press(i+1)=p1/144;
+ press1(i+1)=((d*32.2*(l2+l4))+(0.5*d*((V2^2)-(V1^2)))+(d*32.2*(f*(l1+l2+l3+l4+l5+l6-i)*(V1^2)/(D*2*32.2)))+(d*32.2*(KLvalve+(4*KLelbow)+KLfaucet)*(V1^2)/(2*32.2)))/144;
+ head(i+1)=H;
+ head1(i+1)=((press1(i+1))*144/(32.2*1.94))+((V1^2)/(2*32.2));
+end
+for i=16:25
+ press(i+1)=((d*32.2*((l2+l4)-(i-15)))+(0.5*d*((V2^2)-(V1^2))))/144;
+ press1(i+1)=((d*32.2*((l2+l4)-(i-15)))+(0.5*d*((V2^2)-(V1^2)))+(d*32.2*f*(l1+l2+l3+l4+l5+l6-i)*(V1^2)/(D*2*32.2))+(d*32.2*(KLvalve+(3*KLelbow)+KLfaucet)*(V1^2)/(2*32.2)))/144;
+ head(i+1)=H;
+ head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)/(2*32.2))+(i-l1);
+end
+for i=26:30
+ press(i+1)=((d*32.2*((l2+l4)-(25-15)))+(0.5*d*((V2^2)-(V1^2))))/144;
+ press1(i+1)=((d*32.2*((l2+l4)-(25-15)))+(0.5*d*((V2^2)-(V1^2)))+(d*32.2*(f*(l1+l2+l3+l4+l5+l6-i)*(V1^2)/(D*2*32.2)))+(d*32.2*(KLvalve+(2*KLelbow)+KLfaucet)*(V1^2)/(2*32.2)))/144;
+ head(i+1)=H;
+ head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)/(2*32.2))+l2;
+end
+for i=31:40
+ press(i+1)=((d*32.2*((l2+l4)-(i-l1-l3)))+(0.5*d*((V2^2)-(V1^2))))/144;
+ press1(i+1)=((d*32.2*((l2+l4)-(i-l1-l3)))+(0.5*d*((V2^2)-(V1^2)))+(d*32.2*(f*(l1+l2+l3+l4+l5+l6-i)*(V1^2)/(D*2*32.2)))+(32.2*d*(KLvalve+(KLelbow)+KLfaucet)*(V1^2)/(2*32.2)))/144;
+ head(i+1)=H;
+ head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)/(2*32.2))+(i-(l1+l3));
+end
+for i=41:50
+ press(i+1)=((d*32.2*((l2+l4)-(40-l1-l3)))+(0.5*d*((V2^2)-(V1^2))))/144;
+ press1(i+1)=((d*32.2*((l2+l4)-(40-l1-l3)))+(0.5*d*((V2^2)-(V1^2)))+(d*32.2*(f*(l1+l2+l3+l4+l5+l6-i)*(V1^2)/(D*2*32.2)))+(d*32.2*(KLvalve+KLfaucet)*(V1^2)/(2*32.2)))/144;
+ head(i+1)=H;
+ head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)/(2*32.2))+(l2+l4);
+end
+for i=51:60
+ press(i+1)=((d*32.2*((l2+l4)-(40-l1-l3)))+(0.5*d*((V2^2)-(V1^2))))/144;
+ press1(i+1)=((d*32.2*((l2+l4)-(40-l1-l3)))+(0.5*d*((V2^2)-(V1^2)))+(d*32.2*(f*(l1+l2+l3+l4+l5+l6-i)*(V1^2)/(D*2*32.2)))+d*32.2*((KLfaucet)*(V1^2)/(2*32.2)))/144;
+ head(i+1)=H;
+ head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)/(2*32.2))+(l2+l4);
+end
+plot(dist,press,"o-")
+plot(dist,press1,"x-")
+h1=legend(['without losses';'with losses'])
+xtitle("p vs distance long pipe from (1)","distance along pipe from (1), ft","p, psi")
+xclick(1);
+clf();
+plot(dist,head,"o-")
+plot(dist,head1,"x-")
+h2=legend(['energy line with no losses';'energy line including losses'])
+xtitle("H vs distance long pipe from (1)","distance along pipe from (1), ft","H,elevation to energy line, ft")
+
+end
diff --git a/51/DEPENDENCIES/8_9.sce b/51/DEPENDENCIES/8_9.sce
new file mode 100755
index 000000000..0f2a89a85
--- /dev/null
+++ b/51/DEPENDENCIES/8_9.sce
@@ -0,0 +1,16 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_9data.sci");
+//energy equation=> hp=hL=f*(l/D)*((V^2)/(2*g))
+f=0.0125;
+hp=f*(l*5280/D)*((V^2)/(2*32.2));//ft
+Pa=sw*Q*hp/550;//hp
+disp("hp",Pa,"The horsepower required to drive the system=")
+dia=2:0.01:6;
+count=1;
+for i=2:0.01:6
+ power(count)=sw*Q*(f*(l*5280/i)*(((Q/(%pi*(i^2)/4))^2)/(2*32.2)))/550;
+ count=count+1;
+end
+plot2d(dia,power,rect=[0,0,6,4000000])
+xtitle("Pa vs D","D, ft","Pa, hp") \ No newline at end of file
diff --git a/51/DEPENDENCIES/9_10.sce b/51/DEPENDENCIES/9_10.sce
new file mode 100755
index 000000000..02c0330d9
--- /dev/null
+++ b/51/DEPENDENCIES/9_10.sce
@@ -0,0 +1,15 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\9_10data.sci");
+vis=1.12*(10^(-3));//N*s/(m^2)
+//by free body diagram and assuming CD=24/Re
+U=(sg-1)*999*9.81*((D/1000)^2)/(18*vis);
+disp("m/sec",U,"The velocity of the particle through still water =")
+dia=0:0.001:0.1;
+count=1;
+for i=0:0.001:0.1
+ u(count)=(sg-1)*999*9.81*((i/1000)^2)/(18*vis);
+ count=count+1;
+end
+plot2d(dia,u,rect=[0,0,0.1,0.007])
+xtitle("U vs D","D, mm","U, m/s") \ No newline at end of file
diff --git a/51/DEPENDENCIES/9_7.sce b/51/DEPENDENCIES/9_7.sce
new file mode 100755
index 000000000..274dd2575
--- /dev/null
+++ b/51/DEPENDENCIES/9_7.sce
@@ -0,0 +1,16 @@
+clc;
+clear;
+exec("C:\Program Files\scilab-5.3.0\bin\TCP\9_7data.sci");
+d=1.94;
+vis=2.04*(10^(-5));
+x=d*l/vis;
+U=1:U2;
+for i=1:U2
+ Re(i)=x*i;
+ CDf(i)=0.455/((log10(Re(i)))^2.58);
+ Df(i)=0.5*d*i*i*l*b*CDf(i);
+ xcr(i)=vis*(5*(10^5))/(d*i);
+end
+plot(U,Df,"x-")
+plot(U,xcr,"o-")
+h1=legend(['Df';'xcr'])