summaryrefslogtreecommitdiff
path: root/497/CH4/EX4.3/Chap4_Ex3.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /497/CH4/EX4.3/Chap4_Ex3.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '497/CH4/EX4.3/Chap4_Ex3.sce')
-rwxr-xr-x497/CH4/EX4.3/Chap4_Ex3.sce59
1 files changed, 59 insertions, 0 deletions
diff --git a/497/CH4/EX4.3/Chap4_Ex3.sce b/497/CH4/EX4.3/Chap4_Ex3.sce
new file mode 100755
index 000000000..85ab5bbe9
--- /dev/null
+++ b/497/CH4/EX4.3/Chap4_Ex3.sce
@@ -0,0 +1,59 @@
+//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-4, Example 3, Page 110
+//Title: Power Requirement for a Fluidized Coal Combustor(FBC)
+//==========================================================================================================
+clear
+clc
+
+//INPUT
+deltapd=[3;10]//Distributor pressure drop in kPa
+deltapd2=10;//Distributor pressure drop in kPa
+po=101;//Entering air pressure in kPa
+To=20;//Entering air temperature in degree C
+y=1.4;//Fugacity of air
+deltapb=10;//Pressure drop in bed in kPa
+p3=103;//Pressure at the bed exit in kPa
+F=8;//Feed rate of coal in tons/hr
+H=25;//Gross heatig value of coal in MJ/kg
+Fa=10;//Air required at standard condition in nm^3/kg
+etac=0.75;//Efficiency of compressor
+etap=36;//Efficiency of plant in %
+
+//CALCULATION
+//Calculation of volumetric flow rate of air
+vo=((F*1000)*Fa*((To+273)/273))/3600;
+
+//Case(a) Distributor Pressure drop = 3kPa and Case(b) Distributor Pressure drop = 10kPa
+n=length(deltapd);
+i=1;
+while i<=n
+ p2(i)=p3+deltapb;//Calculation of pressure at the entrance of the bed
+ p1(i)=p2(i)+deltapd(i);//Calculation of pressure before entering the bed
+ ws(i)=(y/(y-1))*po*vo*((p1(i)/po)^((y-1)/y)-1)*(1/etac);//Calculation of power required for the compressor by Eqn.(18) & Eqn.(20)
+ i=i+1;
+end
+
+//Case(c) 50% of the required bypassed to burn the volatile gases. Distributor Pressure drop = 3kPa
+//No change in pressure drop from case(a)
+v1=vo/2;//New volumetric flow rate of air
+ws1=ws(1)/2;//Power required for blower for primary air
+ws2=(y/(y-1))*po*v1*((p3/po)^((y-1)/y)-1)*(1/etac);//Power required for blower for bypassed air
+wst=ws1+ws2;//Total power required for the two blowers
+p=((ws(1)-wst)/ws(1))*100;//Saving in power when compared to case(a)
+
+//OUTPUT
+printf('\nCase(a)');
+mprintf('\n\tVolumetric flow rate of air = %f m^3/hr',vo);
+mprintf('\n\tPower required for compressor = %f kW',ws(1));
+printf('\nCase(b)');
+mprintf('\n\tVolumetric flow rate of air = %f m^3/hr',vo);
+mprintf('\n\tPower required for compressor = %f kW',ws(2));
+printf('\nCase(c)');
+mprintf('\n\tVolumetric flow rate of air = %f m^3/hr',v1);
+mprintf('\n\tPower required for compressor for primary air = %f kW',ws1);
+mprintf('\n\tPower required for blower for bypassed air = %f kW',ws2);
+mprintf('\n\tTotal power required for the two blowers = %f kW',wst);
+mprintf('\n\tPower saved compared to case(a) = %f percent',p);
+
+//====================================END OF PROGRAM ====================================================== \ No newline at end of file