summaryrefslogtreecommitdiff
path: root/497/CH4/EX4.1/Chap4_Ex1.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /497/CH4/EX4.1/Chap4_Ex1.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '497/CH4/EX4.1/Chap4_Ex1.sce')
-rwxr-xr-x497/CH4/EX4.1/Chap4_Ex1.sce72
1 files changed, 72 insertions, 0 deletions
diff --git a/497/CH4/EX4.1/Chap4_Ex1.sce b/497/CH4/EX4.1/Chap4_Ex1.sce
new file mode 100755
index 000000000..ae7ee1021
--- /dev/null
+++ b/497/CH4/EX4.1/Chap4_Ex1.sce
@@ -0,0 +1,72 @@
+//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-4, Example 1, Page 106
+//Title: Design of a Perforated Plate Distributor
+//==========================================================================================================
+clear
+clc
+
+//INPUT
+dt=4;//Vessel diameter in m
+Lmf=2;//Length of the bed in m
+ephsilonmf=0.48;//Void fraction of bed
+rhos=1500;//Density of solid in kg/m^3
+rhog=3.6;//Density of gas in kg/m^3
+myu=2E-5;//Viscosity of gas in kg/m s
+po=3;//Pressure of inlet gas in bar
+uo=0.4;//Superficial velocity of gas in m/s
+uorm=40;//Maximum allowable jet velocity from holes in m/s
+g=9.80;//Acceleration due to gravity in m/s^2
+gc=1;
+pi=3.1428;
+
+//CALCULATION
+//Computation of minimum allowable pressure drop through the distributor
+deltapb={(1-ephsilonmf)*(rhos-rhog)*g*Lmf}/gc;//Calculation of pressure drop in bed using Eqn.(3.17)
+deltapd=0.3*deltapb;//Calculation of pressure drop in distributor using Eqn.(3)
+
+//Computation of orifice coefficient
+Ret=(dt*uo*rhog)/myu;
+if Ret>=3000 then Cd=0.60;
+elseif Ret>=2000 then Cd=0.61;
+elseif Ret>=1000 then Cd=0.64;
+elseif Ret>=500 then Cd=0.68;
+elseif Ret>=300 then Cd=0.70;
+elseif Ret>=100 then Cd=0.68;
+end
+
+//Computation of gas velocity through orifice
+uor=Cd*((2*deltapd)/rhog)^0.5;//Calculation of gas velocity through orifice by using Eqn.(12)
+f=(uo/uor)*100;//Calculation of fraction of open area in the perforated plate
+
+
+//Computation of number of orifices per unit area of distributor
+dor=[0.001;0.002;0.004];//Different orifice diameters in m
+n=length(dor);
+i=1;
+while i<=n
+ Nor(i)=(uo*4)/(pi*uor*(dor(i))^2);//Calculation of number of orifices by using Eqn.(13)
+ i=i+1;
+end
+
+//OUTPUT
+mprintf('\nThe pressure drop in bed:%fPa',deltapb);
+mprintf('\nThe minimum allowable pressure drop in distributor:%fPa',deltapd);
+if uor<uorm then mprintf('\nThe gas veleocity of %fm/s is satisfactory',uor);
+ else mprintf('\nThe gas veleocity of %fm/s is not satisfactory',uor);
+end
+if f<10 then mprintf('\nThe fraction of open area of %f percent is allowable',f);
+ else mprintf('\nThe fraction of open area of %f percent is not allowable',f);
+end
+printf('\nDiameter of orifice(m)');
+printf('\tNumber of orifices per unit area(per sq.m)');
+j=1;
+while j<=n
+ mprintf('\n%f',dor(j));
+ mprintf('\t\t%f',Nor(j));
+ j=j+1;
+end
+printf('\nThis number can be rounded off.');
+printf('\nSince orifices that are too small are liable to clog and those that are too large cause uneven distribution of gas, we choose orifice of diameter %fm',dor(2));
+
+//====================================END OF PROGRAM ====================================================== \ No newline at end of file