diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /497/CH17 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '497/CH17')
-rwxr-xr-x | 497/CH17/EX17.1/Chap17_Ex1.sce | 110 | ||||
-rwxr-xr-x | 497/CH17/EX17.2/Chap17_Ex2.sce | 65 | ||||
-rwxr-xr-x | 497/CH17/EX17.3/Chap17_Ex3.sce | 111 |
3 files changed, 286 insertions, 0 deletions
diff --git a/497/CH17/EX17.1/Chap17_Ex1.sce b/497/CH17/EX17.1/Chap17_Ex1.sce new file mode 100755 index 000000000..280e306ee --- /dev/null +++ b/497/CH17/EX17.1/Chap17_Ex1.sce @@ -0,0 +1,110 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-17, Example 1, Page 434
+//Title: Reactor Development Program
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+dt=[0.081;0.205;3.6];//Reactor diameter for the three reactors in m
+dte=[0.04;0.12;0.70];//Equivalent diameters for the three reactors in m
+db=[0.05;0.057;0.07];//Estimated bubble size in the three reactors in m
+Kr1=1.3889;//Kinetic constant for Reaction 1 in s^-1
+Kr2=0.6111;//Kinetic constant for Reaction 2 in s^-1
+Kr3=0.022;//Kinetic constant for Reaction 3 in s^-1
+dp=60;//Particle size in micrometer
+ephsilonm=0.50;//Void fraction of fixed bed
+ephsilonmf=0.55;//Void fraction at minimum fluidized condition
+umf=0.006;////Velocity at minimum fluidization condition in m/s
+D=2E-5;//Diffusion coefficient of gas in m^2/s
+gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase
+uo=0.2;//Superficial gas velocity in m/s
+XA=0.9;//Conversion
+g=9.81;//Acceleration due to gravity in square m/s^2
+
+//CALCULATION
+Kr12=Kr1+Kr2;
+n=length(dt);
+i=1;
+while i<=n
+ //Preliminary Calcualtions
+ ubr(i)=0.711*(g*db(i))^0.5;//Rise velocity of bubble from Eqn.(6.7)
+ ub(i)=1.55*{(uo-umf)+14.1*(db(i)+0.005)}*dte(i)^0.32+ubr(i);//Bubble velocity for Geldart A particles from Equation from Eqn.(6.11)
+ delta(i)=uo/ub(i);//Fraction of bed in bubbles from Eqn.(6.29)
+ ephsilonf(i)=1-(1-delta(i))*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20)
+ fw=0.6;//Wake volume to bubble volume from Fig.(5.8)
+ gammac(i)=(1-ephsilonmf)*((3/(ubr(i)*ephsilonmf/umf-1))+fw);//Volume of solids in cloud to that of the bubble from Eqn.(6.36)
+ gammae(i)=((1-ephsilonmf)*((1-delta(i))/delta(i)))-gammab-gammac(i);//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)
+ Kbc(i)=4.5*(umf/db(i))+5.85*((D^0.5*g^0.25)/db(i)^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27)
+ Kce(i)=6.77*((D*ephsilonmf*0.711*(g*db(i))^0.5)/db(i)^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)
+ //Effective rate constant from Eqn.(12.32)
+ Kf12(i)=(gammab*Kr12+1/((1/Kbc(i))+(1/(gammac(i)*Kr12+1/((1/Kce(i))+(1/(gammae(i)*Kr12)))))))*(delta(i)/(1-ephsilonf(i)));
+ //Rate of reaction 2 for fluidized bed from Eqn.(12.14)
+ Kf3(i)=(gammab*Kr3+1/((1/Kbc(i))+(1/(gammac(i)*Kr3+1/((1/Kce(i))+(1/(gammae(i)*Kr3)))))))*(delta(i)/(1-ephsilonf(i)));
+ //Rate of raection with respect to A from Eqn.(12.35)
+ KfA(i)=[[Kbc(i)*Kce(i)/gammac(i)^2+(Kr12+Kce(i)/gammac(i)+Kce(i)/gammae(i))*(Kr3+Kce(i)/gammac(i)+Kce(i)/gammae(i))]*delta(i)*Kbc(i)*Kr12*Kr3/(1-ephsilonf(i))] /[[(Kr12+Kbc(i)/gammac(i))*(Kr12+Kce(i)/gammae(i))+Kr12*Kce(i)/gammac(i)]*[(Kr3+Kbc(i)/gammac(i))*(Kr3+Kce(i)/gammae(i))+Kr3*Kce(i)/gammac(i)]];
+ KfAR(i)=((Kr1/Kr12)*Kf12(i))-KfA(i);//Rate of reaction from Eqn.(12.34)
+ KfAR1(i)=((Kr1/Kr12)*Kf12(i));//Since KfA is small
+
+ //(b)Relate Selectivity with conversion in three reactors
+ x=-log(1-XA);//The term Kf12*tou in Eqn.(12.26)
+ tou(i)=x/Kf12(i);//Residence time from Eqn.(12.26)
+ y(i)=(KfAR1(i)/(Kf3(i)-Kf12(i)))*(exp(-x)-exp(-tou(i)*Kf3(i)));//CR/CAi from Eqn.(12.27)
+ SR(i)=y(i)/XA;//Selectivity of R
+
+ //(c)Relate exit composition to space time
+ tou1=5;//Space time in s
+ XA1(i)=1-exp(-Kf12(i)*tou1);//Conversion from Eqn.(12.26)
+ y1(i)=((KfAR1(i)/(Kf12(i)-Kf3(i)))*[exp(-Kf3(i)*tou1)-exp(-Kf12(i)*tou1)]);//CR/CAi R from Eqn.(12.27)
+
+ //(d)Calculate height of bed needed to maximize production
+ y2(i)=(KfAR1(i)/Kf12(i))*(Kf12(i)/Kf3(i))^(Kf3(i)/(Kf3(i)-Kf12(i)));//CRmax/CAi R from Eqn.(12.37)
+ tou2(i)=log(Kf3(i)/Kf12(i))/(Kf3(i)-Kf12(i));//Space time from Eqn.(38)
+ Lf(i)=(uo/(1-ephsilonf(i)))*tou2(i);//Length of bed at fully fluidized condition from Eqn.(12.5)
+ Lm(i)=Lf(i)*(1-ephsilonf(i))/(1-ephsilonm);//Length of bed when settled
+ XA2(i)=1-exp(-Kf12(i)*tou2(i));//Conversion from Eqn.(12.26)
+ i=i+1;
+end
+
+//OUTPUT
+printf('\nLet Laboratory, Pilot plant, Semicommercial unit be Reactor 1,2 & 3 respectively');
+printf('\n(a)Relation between effective rate constant(Kf12) to the gas flow rate(uo)');
+printf('\n\tReactor No.\tKf12(s^-1)\tuo(m/s)');
+i=1;
+while i<=n
+ mprintf('\n\t%1.0f',i);
+ mprintf('\t\t%f',Kf12(i));
+ mprintf('\t%f',uo);
+ i=i+1;
+end
+printf('\n(b)Relation between selectivity with conversion');
+printf('\n\tReactor No.\tKf12(s^-1)\tSR(mol R formed/mol A reacted)');
+i=1;
+while i<=n
+ mprintf('\n\t%1.0f',i);
+ mprintf('\t\t%f',Kf12(i));
+ mprintf('\t%f',SR(i));
+ i=i+1;
+end
+printf('\n(c)Relation between exit compostion and space time');
+printf('\n\tReactor No.\tXA\t\tCR/CAi');
+i=1;
+while i<=n
+ mprintf('\n\t%1.0f',i);
+ mprintf('\t\t%f',XA1(i));
+ mprintf('\t%f',y1(i));
+ i=i+1;
+end
+printf('\n(d)Height of bed needed to maximize the production of acrylonitrile');
+printf('\n\tReactor No.\tLm(m)\t\tXA');
+i=1;
+while i<=n
+ mprintf('\n\t%1.0f',i);
+ mprintf('\t\t%f',Lm(i));
+ mprintf('\t%f',XA2(i));
+ i=i+1;
+end
+
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file diff --git a/497/CH17/EX17.2/Chap17_Ex2.sce b/497/CH17/EX17.2/Chap17_Ex2.sce new file mode 100755 index 000000000..935f6e6d0 --- /dev/null +++ b/497/CH17/EX17.2/Chap17_Ex2.sce @@ -0,0 +1,65 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-17, Example 2, Page 438
+//Title: Design of a Commercial Acrylonitrile Reactor
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+deltaHr=5.15E8;//Heat of reaction in J/k mol
+W=5E4;//Weight of acrylonitirle produced per 334-day year in tonnes
+db=0.07;//Estimated bubble size in m
+dte=0.7;//Equivalent diameter in m
+Kf12=0.35;//Effective rate constant in s^-1 from Example 1
+dp=60;//Particle size in micrometer
+ephsilonm=0.50;//Void fraction of fixed bed
+ephsilonmf=0.55;//Void fraction at minimum fluidized condition
+T=460;//Temperature in reactor in degree C
+Pr=2.5;//Pressure inside reactor in bar
+//Feed gas composition
+x1=1;//Propylene
+x2=1.1;//Ammonia
+x3=11;//Air
+do1=0.08;//OD of heat exchanger tubes in m\
+L=7;//Length of tubes in m
+ho=300;//Outside heat transfer coefficient in W/m^2 K
+hi=1800;//Inside heat transfer coefficient in W/m^2 K
+Tc=253.4;//Temperature of coolant in degree C
+pi=3.14;
+
+//CALCULATION
+//Preliminary calculation
+uo=0.46;//Superficial gas velocity from Fig.E1(a) for the value of Kf12 & db
+tou=8;//Space time from Fig.E2(b) for highest concentraion of product R
+Lm=uo*tou/(1-ephsilonm);
+y=0.58;//CR/CAi from Fig.E1(c) for the value of tou & Kf12
+XA=0.95//From Fig.E1(c) for the value of tou & Kf12
+SR=y/XA;//Selectivity of R
+
+//Cross-sectional area of the reactor
+P=W*10^3/(334*24*3600);//Production rate of acrylonitrile
+F=(P/0.053)/(SR*XA/0.042);//Feed rate of propylene
+V=((F*22.4*(T+273)*(x1+x2+x3))/(42*273*Pr));
+At=V/uo;//Cross-sectional area of reactor needed for the fluidized bed
+
+//Heat exchanger calculation
+q=F*XA*deltaHr/42;//Rate of heat liberation in the reactor
+U=(ho^-1+hi^-1)^-1;//Overall heat transfer coefficient
+deltaT=T-Tc;//Driving force for heat transfer
+Aw=q/(U*deltaT);//Heat exchanger area required to remove q
+Nt=Aw/(pi*do1*L);
+li1=(At/Nt)^0.5;//Pitch for square pitch arrangement
+dte1=4*[li1^2-(pi/4)*do1^2]/(pi*do1);
+if dte1>dte then li=(pi/4*dte*do1+pi/4*do1^2)^0.5;//Pitch if we add dummy tubes
+end
+f=li^2-pi/4*do1^2;//Fraction of bed cross section taken up by tubes
+dt1=sqrt(4/pi*At/(1-f));//Reactor diameter including all its tubes
+
+//OUTPUT
+printf('\nSuperficial gas velocity=%fm/s',uo);
+printf('\nNo. of %1.0fm tubes required=%1.0f',L,Nt);
+printf('\nReactor diameter=%fm',dt1);
+
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file diff --git a/497/CH17/EX17.3/Chap17_Ex3.sce b/497/CH17/EX17.3/Chap17_Ex3.sce new file mode 100755 index 000000000..827816aa3 --- /dev/null +++ b/497/CH17/EX17.3/Chap17_Ex3.sce @@ -0,0 +1,111 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-17, Example 3, Page 444
+//Title: Reactor-Regenerator with Circulating Catalyst: Catalytic Cracking
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+db=0.08;//Estimated bubble size in m
+dte=2;//Equivalent diameter in m
+F1=55.6;//Feed rate of oil in kg/s
+XA=0.63;//Conversion
+uo=0.6;//Superficial gas velocity in m/s
+T1=500;//Temperature of reactor in degree C
+T2=580;//Temperature of regenerator in degree C
+Fs=F1*23.3;//Solid circulation rate from Ex.(15.2)
+rhos=1200;//Density of catalyst in kg/m^3
+dpbar=60;//Average particle size in micrometer
+ephsilonm=0.50;//Void fraction of fixed bed
+ephsilonmf=0.55;//Void fraction at minimum fluidized condition
+umf=0.006;////Velocity at minimum fluidization condition in m/s
+dt=8;//Diameter of reactor in m
+D=2E-5;//Diffusion coefficient of gas in m^2/s
+Kr=8.6;//Rate constant for reaction at 500 degree C in s^-1
+Ka1=0.06;//Rate constant for deactivatiion at 500 degree C in s^-1
+Ka2=0.012;//Rate constant for regeneration at 580 degree C in s^-1
+gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase
+g=9.81;//Acceleration due to gravity in square m/s^2
+pi=3.14;
+
+//CALCULATION
+//Parameters for the fluidized reactor
+ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
+ub=1.55*{(uo-umf)+14.1*(db+0.005)}*dte^0.32+ubr;//Bubble velocity for Geldart A particles from Equation from Eqn.(6.11)
+delta=uo/ub;//Fraction of bed in bubbles from Eqn.(6.29)
+ephsilonf=1-(1-delta)*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20)
+fw=0.6;//Wake volume to bubble volume from Fig.(5.8)
+gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw);//Volume of solids in cloud to that of the bubble from Eqn.(6.36)
+gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)
+Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27)
+Kce=6.77*((D*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)
+
+//Bed height versus catalyst activity in reactor
+a1bar=0.07;//Guess value for average activity in reactor
+x=Kr*a1bar;//Value of Kra1 to be used in the following equation
+Kf=(gammab*x+1/((1/Kbc)+(1/(gammac*x+1/((1/Kce)+(1/(gammae*x)))))))*(delta/(1-ephsilonf));//Effective rate constant from Eqn.(12.14)
+tou=-log(1-XA)/Kf;//Space time from Eqn.(12.16)
+Lm=tou*uo/(1-ephsilonm);//Length of fixed bed for guess value of a1bar
+a1bar1=[0.0233;0.0465;0.0698;0.0930;0.116;0.140];//Various activity values to find Lm
+n=length(a1bar1);
+i=1;
+while i<=n
+ x1(i)=Kr*a1bar1(i);
+ Kf1(i)=(gammab*x1(i)+1/((1/Kbc)+(1/(gammac*x1(i)+1/((1/Kce)+(1/(gammae*x1(i))))))))*(delta/(1-ephsilonf));//Effective rate constant from Eqn.(12.14)
+ tou1(i)=-log(1-XA)/Kf1(i);//Space time from Eqn.(12.16)
+ Lm1(i)=tou1(i)*uo/(1-ephsilonm);//Length of fixed bed for guess value of a1bar...Condition (i)
+ i=i+1;
+end
+
+//Find the optimum size ratio for various a1bar
+Lm=[5;6;7;8;10;12];
+m=length(Lm);
+i=1;
+while i<=m
+ W1(i)=(pi/4)*dt^2*rhos*(1-ephsilonm)*Lm(i);//Bed weight
+ t1bar(i)=W1(i)/Fs;//Mean residence time of solids in reactor
+ t2bar(i)=t1bar(i)*(Ka1/Ka2)^0.5;//Mean residence time of soilds at optimum from Eqn.(16)
+ a1bar2(i)=(Ka2*t2bar(i))/(Ka1*t1bar(i)+Ka1*t1bar(i)*Ka2*t2bar(i)+Ka2*t2bar(i));//From Eqn.(15)...Condition (ii)
+ i=i+1;
+end
+
+//Final design values
+Lm4=7.3;//For satisfying condition (i) & (ii)
+a1bar3=0.0744;//By interpolation
+x2=a1bar3*Kr;
+W11=(pi/4)*dt^2*rhos*(1-ephsilonm)*Lm4;//Bed weight for reactor
+t1bar1=W11/Fs;//Mean residence time of solids in reactor
+a2bar=(1+Ka1*t1bar1)*a1bar3;//Average activity in regenrator from Eqn.(10)
+t2bar1=t1bar1*(Ka1/Ka2)^0.5;//Mean residence time of solids in regenerator from Eqn.(16)
+W2=W11*(t2bar1/t1bar1);//Bed weight for regenerator
+dt2=dt*(W2/W11)^0.5;//Diameter of regenerator assuming same static bed height for reactor and regerator
+
+//OUTPUT
+printf('\nBed height versus catalyst activity in reactor');
+printf('\n\tAverage activity');
+printf('\tLength of fixed bed(m)');
+i=1;
+while i<=n
+ mprintf('\n\t%f',a1bar1(i));
+ mprintf('\t\t%f',Lm1(i));
+ i=i+1;
+end
+printf('\nOptimum size ratio for various activity in reactor');
+printf('\n\tLength of fixed bed(m)');
+printf('\tAverage activity');
+i=1;
+while i<=m
+ mprintf('\n\t%f',Lm(i));
+ mprintf('\t\t%f',a1bar2(i));
+ i=i+1;
+end
+printf('\nFinal design values');
+printf('\n\tDiameter of reactor(m):%f',dt);
+printf('\n\tBed weight for reactor(tons):%f',W11/10^3);
+printf('\n\tBed weight for regenerator(tons):%f',W2/10^3);
+printf('\n\tDiameter of regenerator(m):%f',dt2);
+printf('\n\tSolid circulation rate(tons/hr):%f',Fs*3.6);
+
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file |