diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /497/CH12 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '497/CH12')
-rwxr-xr-x | 497/CH12/EX12.1/Chap12_Ex1.sce | 44 | ||||
-rwxr-xr-x | 497/CH12/EX12.2/Chap12_Ex2.sce | 60 | ||||
-rwxr-xr-x | 497/CH12/EX12.3/Chap12_Ex3.sce | 42 | ||||
-rwxr-xr-x | 497/CH12/EX12.4/Chap12_Ex4.sce | 31 | ||||
-rwxr-xr-x | 497/CH12/EX12.5/Chap12_Ex5.sce | 46 |
5 files changed, 223 insertions, 0 deletions
diff --git a/497/CH12/EX12.1/Chap12_Ex1.sce b/497/CH12/EX12.1/Chap12_Ex1.sce new file mode 100755 index 000000000..d55dca836 --- /dev/null +++ b/497/CH12/EX12.1/Chap12_Ex1.sce @@ -0,0 +1,44 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-12, Example 1, Page 293
+//Title: Fine Particle (Geldart A) Bubbling Bed Reactor
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+Kr=10;//rate constant in m^3 gas/m^3 cat s
+D=2E-5;//Diffusion coefficient of gas in m^2/s
+dpbar=68;//Average partilce size in micrometers
+ephsilonm=0.5;//Void fraction of fixed bed
+gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase
+ephsilonmf=0.55;//Void fraction at minimum fluidization condition
+umf=0.006;//Velocity at minimum fluidization condition in m/s
+db=0.04;//Equilibrium bubble size in m
+Lm=0.7;//Length of the bed in m
+uo=0.1;//Superficial gas velocity in m/s
+dbed=0.26;//Diameter of the bed in m
+g=9.81;//Acceleration due to gravity in square m/s^2
+
+//CALCULATION
+ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
+ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds in Eqn.(6.8)
+Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27)
+Kce=6.77*((D*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)
+delta=uo/ub;//Fraction of bed in bubbles from Eqn.(6.29)
+fw=0.6;//Wake volume to bubble volume from Fig.(5.8)
+gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw);//Volume of solids in cloud to that of the bubble from Eqn.(6.36)
+gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)
+ephsilonf=1-(1-delta)*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20)
+Lf=(1-ephsilonm)*Lm/(1-ephsilonf);//Length of fixed bed from Eqn.(6.19)
+Krtou=Kr*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5)
+Kf=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)+(1/(gammae*Kr))))));//Raction rate for fluidized bed from Eqn.(14)
+XA=1-exp(-1*Kf*Lf/ub);//Conversion from Eqn.(16)
+
+//OUTPUT
+mprintf('\nThe dimnesionless reaction rate group: %f',Krtou);
+mprintf('\nThe reaction rate for fluidized bed: %fs^-1',Kf);
+mprintf('\nConversion: %f',XA);
+
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file diff --git a/497/CH12/EX12.2/Chap12_Ex2.sce b/497/CH12/EX12.2/Chap12_Ex2.sce new file mode 100755 index 000000000..3eb8edbb8 --- /dev/null +++ b/497/CH12/EX12.2/Chap12_Ex2.sce @@ -0,0 +1,60 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-12, Example 2, Page 298
+//Title: Commercial-Sized Phthalic Anhydride Reactor
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+umf=0.005;//Velocity at minimum fluidization condition in m/s
+ephsilonm=0.52;//Void fraction of fixed bed
+ephsilonmf=0.57;//Void fraction at minimum fluidization condition
+DA=8.1E-6;//Diffusion coefficient of gas in m^2/s
+DR=8.4E-6;//Diffusion coefficient of gas in m^2/s
+Lm=5;//Length of the bed in m
+dte=1;//Diameter of tube in m
+Kr1=1.5;//rate constant in m^3 gas/m^3 cat s
+Kr3=0.01;//rate constant in m^3 gas/m^3 cat s
+gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase
+uo=0.45;//Superficial gas velocity in m/s
+db=0.05;//Equilibrium bubble size in m from Fig.(6.8)
+ub=1.5;//Velocity of bubbles in bubbling bed in m/s from Fig.(6.11(a))
+g=9.81;//Acceleration due to gravity in square m/s^2
+
+//CALCULATION
+ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
+KbcA=4.5*(umf/db)+5.85*((DA^0.5*g^0.25)/db^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27)
+KceA=6.77*((DA*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)
+KbcR=4.5*(umf/db)+5.85*((DR^0.5*g^0.25)/db^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27)
+KceR=6.77*((DR*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)
+delta=uo/ub;//Fraction of bed in bubbles from Eqn.(6.29)
+fw=0.6;//Wake volume to bubble volume from Fig.(5.8)
+gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw);//Volume of solids in cloud to that of the bubble from Eqn.(6.36)
+gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)
+ephsilonf=1-(1-delta)*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20)
+Lf=(1-ephsilonm)*Lm/(1-ephsilonf);//Length of fixed bed from Eqn.(6.19)
+Krtou=Kr1*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5)
+Kr12=Kr1;//Since the reactions are a special case of Denbigh scheme
+Kr34=Kr3;
+Kf1=(gammab*Kr12+1/((1/KbcA)+(1/(gammac*Kr12+1/((1/KceA)+(1/(gammae*Kr12)))))))*(delta/(1-ephsilonf));//Rate of reaction 1 for fluidized bed from Eqn.(14)
+Kf3=(gammab*Kr34+1/((1/KbcR)+(1/(gammac*Kr34+1/((1/KceR)+(1/(gammae*Kr34)))))))*(delta/(1-ephsilonf));//Rate of reaction 2 for fluidized bed from Eqn.(14)
+Kf12=Kf1;
+Kf34=Kf3;
+KfA=[[KbcR*KceA/gammac^2+(Kr12+KceA/gammac+KceA/gammae)*(Kr34+KceR/gammac+KceR/gammae)]*delta*KbcA*Kr12*Kr34/(1-ephsilonf)]/[[(Kr12+KbcA/gammac)*(Kr12+KceA/gammae)+Kr12*KceA/gammac]*[(Kr34+KbcR/gammac)*(Kr34+KceR/gammae)+Kr34*KceR/gammac]];//Rate of raection with respect to A from Eqn.(35)
+KfAR=Kr1/Kr12*Kf12-KfA;//Rate of reaction from Eqn.(34)
+tou=Lf*(1-ephsilonf)/uo;//Residence time from Eqn.(5)
+XA=1-exp(-Kf1*tou);//Conversion of A from Eqn.(26)
+XR=1-((KfAR/(Kf12-Kf34))*[exp(-Kf34*tou)-exp(-Kf12*tou)]);//Conversion of R from Eqn.(27)
+SR=(1-XR)/XA;//Selectivity of R
+
+//OUTPUT
+
+mprintf('\nRate of reaction 1 for fluidized bed:%f',Kf1);
+mprintf('\nRate of reaction 2 for fluidized bed:%f',Kf3);
+mprintf('\nRate of reaction 1 with respect to A:%f',KfA);
+mprintf('\nThe Conversion of Napthalene:%f percentage',XA*100);
+mprintf('\nThe selectivity of Phthalic anhydride:%f percentage',SR*100);
+
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file diff --git a/497/CH12/EX12.3/Chap12_Ex3.sce b/497/CH12/EX12.3/Chap12_Ex3.sce new file mode 100755 index 000000000..8eec09dc6 --- /dev/null +++ b/497/CH12/EX12.3/Chap12_Ex3.sce @@ -0,0 +1,42 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-12, Example 3, Page 302
+//Title: Bubbling Bed Reactor for Intermediate Sized Reactor
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+Kr=3;//rate constant in m^3 gas/m^3 cat s
+db=0.12;//Equilibrium bubble size in m
+D=9E-5;//Diffusion coefficient of gas in m^2/s
+dpbar=68;//Average partilce size in micrometers
+ephsilonm=0.42;//Void fraction of fixed bed
+uo=0.4;//Superficial gas velocity in m/s
+Lm=0.8;//Length of the bed in m
+ephsilonmf=0.45;//Void fraction at minimum fluidization condition
+umf=0.21;//Velocity at minimum fluidization condition in m/s
+gammab=0;//Ratio of volume of dispersed solids to that of bubble phase
+g=9.81;//Acceleration due to gravity in square m/s^2
+
+//CALCULATION
+ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
+ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds in Eqn.(6.8)
+ubstar=ub+3*umf;//Rise velocity of the bubble gas from Eqn.(45)
+delta=(uo-umf)/(ub+umf);//Fraction of bed in bubbles from Eqn.(6.46)
+Kbe=4.5*(umf/db);//Interchange coefficient between bubble and emulsion from Eqn.(47)
+Lf=Lm*(1-ephsilonm)/((1-delta)*(1-ephsilonmf));//Length of fixed bed
+phi=[(Kr/Kbe)^2*{(1-ephsilonmf)-gammab*(umf/ubstar)}^2+((delta/(1-delta))+umf/ubstar)^2+2*(Kr/Kbe)*{(1-ephsilonmf)-gammab*(umf/ubstar)}*((delta/(1-delta))-umf/ubstar)]^0.5;//From Eqn.(52)
+q1=0.5*Kr/umf*{(1-ephsilonmf)+gammab*(umf/ubstar)}+0.5*Kbe/umf*{((delta/(1-delta))+umf/ubstar)-phi};//From Eqn.(50)
+q2=0.5*Kr/umf*{(1-ephsilonmf)+gammab*(umf/ubstar)}+0.5*Kbe/umf*{((delta/(1-delta))+umf/ubstar)+phi};//From Eqn.(50)
+si1=0.5-0.5*((1-delta)/delta)*[umf/ubstar-Kr/Kbe*{(1-ephsilonmf)-gammab*(umf/ubstar)}-phi];//From Eqn.(51)
+si2=0.5-0.5*((1-delta)/delta)*[umf/ubstar-Kr/Kbe*{(1-ephsilonmf)-gammab*(umf/ubstar)}+phi];//From Eqn.(51)
+XA=1-(delta/(1-delta))*(1/(uo*phi))*[(1-si2)*{si1*delta*ubstar+(1-delta)*umf}*exp(-q1*Lf)+(si1-1)*{si2*delta*ubstar+(1-delta)*umf}*exp(-q2*Lf)];//Conversion from Eqn.(49)
+Krtou=Kr*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5)
+
+//OUTPUT
+mprintf('\nCOmparing the values of 1-XA = %f and Krtou = %f with Fig.(6), we can conlcude that this operating condition is shown as point A in Fig.(3)',1-XA,Krtou);
+printf('\nLine 2 gives the locus of conversions for different values of the reaction rate group for this fluidized contacting');
+
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file diff --git a/497/CH12/EX12.4/Chap12_Ex4.sce b/497/CH12/EX12.4/Chap12_Ex4.sce new file mode 100755 index 000000000..77c4e6ec6 --- /dev/null +++ b/497/CH12/EX12.4/Chap12_Ex4.sce @@ -0,0 +1,31 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-12, Example 4, Page 305
+//Title: Reaction in the Slow Bubble Regime
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+uo=0.25;//Superficial gas velocity in m/s
+db=0.025;//Equilibrium bubble size in m
+Kr=1.5;//rate constant in m^3 gas/m^3 cat s
+umf=0.21;//Velocity at minimum fluidization condition in m/s
+Lm=0.8;//Length of the bed in m
+ephsilonm=0.42;//Void fraction of fixed bed
+g=9.81;//Acceleration due to gravity in square m/s^2
+
+//CALCULATION
+ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
+ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds in Eqn.(6.8)
+delta=(uo-umf)/(ub+2*umf);//Fraction of bed in bubbles from Eqn.(55) since ub/umf<<1
+XA=1-exp(-Kr*Lm*((1-ephsilonm)/uo)*(umf/uo)*(1-delta));//Conversion from Eqn.(57)
+Krtou=Kr*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5)
+
+
+//OUTPUT
+mprintf('\nComparing the values of 1-XA = %f and Krtou = %f with Fig.(6), we can conlcude that this operating condition is shown as point B in Fig.(3)',1-XA,Krtou);
+printf('\nLine 3 gives the locus of conversions for different values of the reaction rate group for this fluidized contacting');
+
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file diff --git a/497/CH12/EX12.5/Chap12_Ex5.sce b/497/CH12/EX12.5/Chap12_Ex5.sce new file mode 100755 index 000000000..929664bff --- /dev/null +++ b/497/CH12/EX12.5/Chap12_Ex5.sce @@ -0,0 +1,46 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491
+
+//Chapter-12, Example 5, Page 307
+//Title: Conversion in the Freeboard of a Reactor
+//==========================================================================================================
+
+clear
+clc
+
+//INPUT
+uo=0.3;//Superficial gas velocity in m/s
+Lf=1.1;//Length of fixed bed in m
+Hf=1.2;//Length of freeboard in m
+db=0.04;//Equilibrium bubble size in m
+umf=0.006;//Velocity at minimum fluidization condition in m/s
+ephsilonmf=0.55;//Void fraction at minimum fluidization condition
+gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase
+Kr=10;//rate constant in m^3 gas/m^3 cat s
+D=2E-5;//Diffusion coefficient of gas in m^2/s
+g=9.81;//Acceleration due to gravity in square m/s^2
+
+//CALCULATION
+ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
+ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds in Eqn.(6.8)
+Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27)
+Kce=6.77*((D*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)
+delta=uo/ub;//Fraction of bed in bubbles from Eqn.(6.29)
+ephsilonf=1-(1-delta)*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20)
+fw=0.6;//Wake volume to bubble volume from Fig.(5.8)
+gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw);//Volume of solids in cloud to that of the bubble from Eqn.(6.36)
+gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)
+Kf=(gammab*Kr)+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)+(1/(gammae*Kr))))));//Raction rate for fluidized bed from Eqn.(14)
+XA=1-exp(-1*Kf*Lf/ub);//Conversion at the top of dense bed from Eqn.(16)
+etabed=(Kf*delta)/(Kr*(1-ephsilonf));//Reactor efficiency from Eqn.(22)
+a=0.6/uo//Since uoa = 0.6s^-1 from Fig.(5)
+adash=6.62;//From Fig.(5)
+XA1=1-1/(exp(((1-ephsilonf)*Kr/(uo*a))*[(1-exp(-a*Hf))-((1-etabed)/(1+(adash/a)))*(1-exp(-(a+adash)*Hf))]));//Conversion from Eqn.(64)
+XA2=1-(1-XA1)*(1-XA);//Conversion at the exit from Eqn.(64)
+
+//OUTPUT
+printf('\nThe conversion:');
+mprintf('\n\tAt the top pf the dense bed: %f percentage',XA*100);
+mprintf('\n\tAt the reactor exit: %f percentage',XA2*100);
+
+//Disclaimer: The value of kf deviate from the one given in textbook, where as it is close to the value obtained by manual calculation.
+//====================================END OF PROGRAM ======================================================
\ No newline at end of file |