diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /49/CH7 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '49/CH7')
-rwxr-xr-x | 49/CH7/EX7.1/ex1.sce | 21 | ||||
-rwxr-xr-x | 49/CH7/EX7.2/ex2.sce | 15 | ||||
-rwxr-xr-x | 49/CH7/EX7.3/ex3.sce | 35 | ||||
-rwxr-xr-x | 49/CH7/EX7.4/ex4.sce | 53 | ||||
-rwxr-xr-x | 49/CH7/EX7.5/ex5.sce | 25 | ||||
-rwxr-xr-x | 49/CH7/EX7.6/ex6.sce | 13 | ||||
-rwxr-xr-x | 49/CH7/EX7.7/ex7.sce | 25 | ||||
-rwxr-xr-x | 49/CH7/EX7.8/ex8.sce | 16 |
8 files changed, 203 insertions, 0 deletions
diff --git a/49/CH7/EX7.1/ex1.sce b/49/CH7/EX7.1/ex1.sce new file mode 100755 index 000000000..6dcb67569 --- /dev/null +++ b/49/CH7/EX7.1/ex1.sce @@ -0,0 +1,21 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Flow Measurement
+// Example 1// Page 406
+t=293 //('Entering the temperature(in k) of pitot tube =:')
+p1=0.1*10^6 //('entering the air pressure in pitot tube=:')
+v=10 //('entering the velocity of air in pitot tube=:')
+R=287;
+disp("Density is given by:")
+disp("pho1=p1/(R*t);")
+pho1=p1/(R*t);
+// dynamic pressure
+Pd=pho1*v^2/2;
+//we know that v=sqrt(2Pd/pho)
+// dv/dP=1/2(2/pho*Pd)^0.5
+// Let the error or uncertainty in velocity is represented by Wv and in pressure by Wp
+Wp=1 //('entering the uncertainty in the measurement of dynamic pressure=:')
+disp("Uncertainty in velocity is given by ")
+disp("Wv=(1/2)*(2/(pho1*Pd))^0.5*Wp;")
+Wv=(1/2)*(2/(pho1*Pd))^0.5*Wp;
+per_unc=Wv*100/10;
+printf('So the percentage uncertainty in the measurement of velocity is %fd %% \n',per_unc)
diff --git a/49/CH7/EX7.2/ex2.sce b/49/CH7/EX7.2/ex2.sce new file mode 100755 index 000000000..9053b0bee --- /dev/null +++ b/49/CH7/EX7.2/ex2.sce @@ -0,0 +1,15 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Anemometers
+// Example 2// Page 426
+// To derive an expression for velocity across a hot wire anemometer in terms of the wire resistance Rw, the current through the wire Iw and the empirical constants C0 and C1 and the fluid temperature.
+disp("C0+C1(v)^.5)(Tw-Tf)=Iw^2Rw")
+disp("Rw= Rr[1+a(Tw-Tr)]")
+disp("Rw/Rr=1+a(Tw-Tr)")
+disp("Tw-Tr=1/a[Rw/Rr-1]")
+disp("Tw=1/a[Rw/Rr-1]+Tr")
+disp("Co+C1(v)^0.5=Iw^2Rw/Tw-Tf")
+disp("so,")
+disp("v=1/C1[{Iw^2Rw/(1/a[Rw/Rr-1]+Tr-Tf)]}^2-C0")
+
+
+
diff --git a/49/CH7/EX7.3/ex3.sce b/49/CH7/EX7.3/ex3.sce new file mode 100755 index 000000000..f7f3dbdeb --- /dev/null +++ b/49/CH7/EX7.3/ex3.sce @@ -0,0 +1,35 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Gross volume flow rate(venturi)
+// Example 3// Page 438
+dp=0.02 //('entering the diameter of the line in which water is flowing=:')
+dt=0.01 //('entering the diameter of venturi=:')
+B=0.5; // given
+// The discharge coefficients remains in the flat portion of the curve for reynolds numbers 10^4 to 10^6 Cd=0.95
+u=8.6*10^-4 //('entering the viscosity=:')
+Cd=0.95;
+Rn_min=10^4;
+disp("Minimum flow rate is given by:")
+disp("mdot_min=%pi*dp*u*Rn_min/4")
+mdot_min=%pi*dp*u*Rn_min/4
+g=9.81;
+printf('Minimum flow rate at 25 deg cent is %1.3f kg/s\n',mdot_min)
+pf=1000 // density of water
+At=78.53*10^-6 //('entering the throat area=:')
+pm=13.6 //('entering the density of manometer fluid=:')
+
+//h is the height of mercury column due to flow
+disp("To calculate the mercury reading corresponding to minimum flow, using-")
+disp("h_min=((mdot_min*sqrt(1-B^4))/((sqrt(2*g*(pm-pf/pf))*pf*At*Cd)))^2;")
+h_min=((mdot_min*sqrt(1-B^4))/((sqrt(2*g*(pm-pf/pf))*pf*At*Cd)))^2;
+//in mm
+H_min=h_min*1000
+printf('So the pressure reading observed for the given flow ratre is %1.1f mm of Hg\n',H_min)
+h_max=.25 //('entering the value of h maximum=:')
+m_max=(pf*At*Cd*sqrt(2*g*(pm-pf/pf))*sqrt(h_max))/sqrt(1-B^4);
+printf('The maximum flow rate is %1.1f kg/s\n',m_max)
+
+
+
+
+
+
diff --git a/49/CH7/EX7.4/ex4.sce b/49/CH7/EX7.4/ex4.sce new file mode 100755 index 000000000..de5b2e832 --- /dev/null +++ b/49/CH7/EX7.4/ex4.sce @@ -0,0 +1,53 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Gross volume flow rate(venturi)
+// Example 4// Page 439
+dt=0.15 //('entering the throat diameter=:')
+dp=0.3 //('entering the upstream diameter=:')
+Cd=0.95;
+B=0.5;
+pm=13600 //('entering the density of manometer fluid=:')
+At=%pi*dt^2/4;
+g=9.81;
+
+pf=995.8
+h=0.2 //('entering the height of mercury column due to flow (in m)=:')
+q=pf*At*Cd;
+w=(1-B^4)^(1/2);
+e=sqrt(2*g*((pm/pf)-1));
+mdot_25=q*e*sqrt(h)/w
+disp("Mass flow is given by :")
+disp("mdot=pf*At*Cd*(1/(1-B^4)^(1/2))*sqrt(2*g*((pm/pf)-1)*sqrt h)")
+printf('So the mass flow at 25 deg cent is %fd kg/s\n',mdot_25)
+
+
+
+pf=999.8 //('entering density of water at 25 deg cent=:')
+h=0.2 //('entering the height of mercury column due to flow (in m)=:')
+q=pf*At*Cd;
+w=(1-B^4)^(1/2);
+e=sqrt(2*g*((pm/pf)-1));
+mdot=q*e*sqrt(h)/w
+// error is mdot(25 deg cent)-mdot(t deg cent)
+printf(' The mass flow at 0 deg cent is %fd kg/s\n',mdot)
+error1=abs(((mdot_25-mdot)/mdot_25)*100);
+
+
+
+printf(' Change in temperature of water introduces insignificant error in mass flow measurement i.e. %1.2f%% \n',error1)
+pf=988.8 //('entering density of water at 25 deg cent=:')
+h=0.2 //('entering the height of mercury column due to flow (in m)=:')
+q=pf*At*Cd;
+w=(1-B^4)^(1/2);
+e=sqrt(2*g*((pm/pf)-1));
+mdot=q*e*sqrt(h)/w
+// error is mdot(25 deg cent)-mdot(t deg cent)
+printf(' The mass flow at 50 deg cent is %fd kg/s\n',mdot)
+error2=abs(((mdot_25-mdot)/mdot_25)*100);
+
+
+
+printf('Therefore, change in temperature of water introduces insignificant error in mass flow measurement i.e. %1.2f%% \n',error2)
+
+
+
+
diff --git a/49/CH7/EX7.5/ex5.sce b/49/CH7/EX7.5/ex5.sce new file mode 100755 index 000000000..c6493ae50 --- /dev/null +++ b/49/CH7/EX7.5/ex5.sce @@ -0,0 +1,25 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Gross volume flow rate(venturi)
+// Example 5// Page 440
+dt=.1 //('entering the throat diameter=:')
+dp=.2 //('entering the upstream diameter=:')
+Cd=0.95;
+g=9.81
+B=0.5;
+At=%pi*dt^2/4;
+pf=780 //('entering density of oil in the pipeline =:')
+pm=1000 //('entering the density of manometer fluid=:')
+w=(1-B^4)^(1/2);
+e=sqrt(2*g*((pm/pf)-1));
+S_ideal=At*e/w;
+printf('The ideal volume flow rate sensitivity is %1.4f (m^3/s/h^0.5)\n',S_ideal)
+// part b
+disp("Actual volume rate sensitivity is given by :")
+disp("S_actual=S_ideal/Cd")
+S_actual=S_ideal/Cd;
+printf('The actual volume rate sensitivity is %1.4f \n',S_actual)
+h=.3 //('entering the manometer reading of water height=:')
+disp("Actual volume flow rate is given by:")
+disp("Q_actual=S_actual*sqrt(h)")
+Q_actual=S_actual*sqrt(h);
+printf('The actual volume flow rate is %1.3f m^3/s\n',Q_actual)
diff --git a/49/CH7/EX7.6/ex6.sce b/49/CH7/EX7.6/ex6.sce new file mode 100755 index 000000000..714611d64 --- /dev/null +++ b/49/CH7/EX7.6/ex6.sce @@ -0,0 +1,13 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Sonic nozzle
+// Example 6// Page 443
+disp("Let uncertainty in mass flow rate be represented by wm")
+disp("Let uncertainty with pressure be represented by wp")
+disp("Let uncertainty with temperature measurement be represented by wt")
+// To calculate the uncertainty in the temperature measurement
+wm_m=0.02 //('entering the uncertainty in mass flow=:')
+wp_p=0.01 //('entering the uncertainty in pressure measurement=:')
+disp("Uncertainty in temperature is given by:")
+disp("wt_t=2*sqrt(wm_m^2-wp_p^2)*100")
+wt_t=2*sqrt(wm_m^2-wp_p^2)*100
+printf('uncertainty in the temperature measurement is %1.2f %%\n',wt_t)
\ No newline at end of file diff --git a/49/CH7/EX7.7/ex7.sce b/49/CH7/EX7.7/ex7.sce new file mode 100755 index 000000000..e37fa2672 --- /dev/null +++ b/49/CH7/EX7.7/ex7.sce @@ -0,0 +1,25 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Venturi
+// Example 7// Page 446
+p1=5*10^6 //('entering the pressure of air when venturi is to be used =:')
+t1=298 //('entering the temperature of air for the same=:')
+m_max=1 //('entering the maximum flow rate=:')
+m_min=0.3 //('entering the minimum flow rate=:')
+Re_min=10^5 //('entering the throats reynold number=:')
+R=287; // for air
+pho1=p1/(R*t1);
+b=0.5;
+mu=1.8462*10^-5 //('enter the absolute viscosity=:')
+D_max=(4*m_max)/(%pi*Re_min*mu);
+D_min=(4*m_min)/(%pi*Re_min*mu);
+printf('So the throat diameters for maximum and minimum flows so the reynolds number does not exceed 10^5 are %1.4f m and %1.4f m respectively\n',D_max,D_min)
+// To calculate the differential pressure
+At=%pi*D_max^2/4;
+C=1; // discharge coefficient
+M=1.0328; // Velocity approach coefficient
+Y=.9912; // Expansion factor
+dP_max=(m_max)^2/(Y^2*M^2*C^2*At^2*2*pho1);
+printf('The differential pressure for maximum flow rate is %1.5f Pa\n',dP_max)
+dP_min=(m_min)^2/(Y^2*M^2*C^2*At^2*2*pho1)*1000;
+printf('The differential pressure for minimum flow rate is %1.2f mPa\n',dP_min)
+
diff --git a/49/CH7/EX7.8/ex8.sce b/49/CH7/EX7.8/ex8.sce new file mode 100755 index 000000000..c3ecc51e2 --- /dev/null +++ b/49/CH7/EX7.8/ex8.sce @@ -0,0 +1,16 @@ +//CHAPTER 7_ Flow Measurement
+//Caption : Constant-Pressure-Drop , Variable-Area Meters(Rotameters)
+// Example 8// Page 455
+Qd=.1/60 //('enter the maximum flow of water=:')
+t=298 //('enter the temperature in k=:')
+d=.03 //('enter the float diameter in m=:')
+L=0.5 //('enter the total length of rotameter=:')
+D=.03 //('enter the diameter of tube at inlet=:')
+Vb=25*10^-6 //('enter the total volume of float=:')
+Af=7.068*10^-4 // area of float
+j=2*9.81*Vb/Af;
+y=L;
+disp("Tube taper is given by:")
+disp("a=(Qd*2)/(%pi*D*y*j^(1/2))")
+a=(Qd*2)/(%pi*D*y*j^(1/2));
+printf('tube taper is %1.4f m/m(taper)\n',a)
|