summaryrefslogtreecommitdiff
path: root/479/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /479/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '479/CH7')
-rwxr-xr-x479/CH7/EX7.1/Example_7_1.sce11
-rwxr-xr-x479/CH7/EX7.2/Example_7_2.sce11
-rwxr-xr-x479/CH7/EX7.3/Example_7_3.sce47
-rwxr-xr-x479/CH7/EX7.4/Example_7_4.sce11
-rwxr-xr-x479/CH7/EX7.5/Example_7_5.sce158
5 files changed, 238 insertions, 0 deletions
diff --git a/479/CH7/EX7.1/Example_7_1.sce b/479/CH7/EX7.1/Example_7_1.sce
new file mode 100755
index 000000000..4e8c6b092
--- /dev/null
+++ b/479/CH7/EX7.1/Example_7_1.sce
@@ -0,0 +1,11 @@
+//Chemical Engineering Thermodynamics
+//Chapter 7
+//Ideal Gases
+
+//Example 7.1
+clear;
+clc;
+
+//Given
+//The given example is a theoretical problem and it does not involve any numerical computation
+//end \ No newline at end of file
diff --git a/479/CH7/EX7.2/Example_7_2.sce b/479/CH7/EX7.2/Example_7_2.sce
new file mode 100755
index 000000000..ef0c05c86
--- /dev/null
+++ b/479/CH7/EX7.2/Example_7_2.sce
@@ -0,0 +1,11 @@
+//Chemical Engineering Thermodynamics
+//Chapter 7
+//Ideal Gases
+
+//Example 7.2
+clear;
+clc;
+
+//Given
+//The given example is a theoretical problem and it does not involve any numerical computation
+//end \ No newline at end of file
diff --git a/479/CH7/EX7.3/Example_7_3.sce b/479/CH7/EX7.3/Example_7_3.sce
new file mode 100755
index 000000000..c40244580
--- /dev/null
+++ b/479/CH7/EX7.3/Example_7_3.sce
@@ -0,0 +1,47 @@
+//Chemical Engineering Thermodynamics
+//Chapter 7
+//Ideal Gases
+
+//Example 7.3
+clear;
+clc;
+
+//Given
+P1 = 15;//initial pressure in Kgf/cm^2
+P2 = 1;//final pressure in Kgf/cm^2
+V1 = 0.012;//initial volume in m^3
+V2 = 0.06;//final volume in m^3
+T1 = 420;//initial temperature in K
+M = 28;//molecular weight of the gas
+Cp = 0.25;//specific heat at constant pressure in Kcal/Kg K
+R = 1.98;//gas constant in Kcal/Kg mole K
+R2 = 848;//gas constant in mKgf/Kgmole K
+//Cv = a+0.0005*T1; Specific heat at constant volume
+
+//To Calculate the final temperature of the ideal gas, work done in an open and closed system,internal energy change for the process
+//(a)Calculation of final temperature
+//Using ideal gas law:(P*V)/(R*T)
+T2 = (P2*V2*T1)/(P1*V1);
+mprintf('(a)The final temperature is %d K',T2);
+
+//(b)Calculation of work in an open and closed system
+//From equation 7.22(page no 147): P1*(V1^n)=P2*(V2^n)
+n = (log(P2/P1))/(log(V1/V2));
+//From equation 7.25(page no 149)
+W = ((P1*V1)-(P2*V2))/(n-1)*10^4;//work in mKgf
+W1 = W/427;//Work in Kcal
+mprintf('\n (b)The work in a closed system is %f Kcal',W1);
+Ws = n*W1;//from equation 7.28(page no 149)
+mprintf('\n The work in an open system is %f Kcal',Ws);
+
+//(c)Calculation of internal energy change
+R1 = R/M;//gas constant in Kcal/Kg
+Cv = Cp-R1;//specific heat at constant volume in Kcal/Kg K
+a = Cv-(0.0005*T1);
+m = (P1*10^4*V1*M)/(R2*T1);//mass of gas in Kg
+function y = f(T)
+ y = m*(a+(0.0005*T));
+endfunction
+del_E = intg(T1,T2,f);//internal energy change in Kcal/Kg
+del_E1 = M*del_E;//internal energy change in Kcal/Kgmole
+mprintf('\n (c)The internal energy change for the process is %f Kcal/Kgmole',del_E1); \ No newline at end of file
diff --git a/479/CH7/EX7.4/Example_7_4.sce b/479/CH7/EX7.4/Example_7_4.sce
new file mode 100755
index 000000000..cbdffd2bf
--- /dev/null
+++ b/479/CH7/EX7.4/Example_7_4.sce
@@ -0,0 +1,11 @@
+//Chemical Engineering Thermodynamics
+//Chapter 7
+//Ideal Gases
+
+//Example 7.4
+clear;
+clc;
+
+//Given
+//The given example is a theoretical problem and it does not involve any numerical computation
+//end \ No newline at end of file
diff --git a/479/CH7/EX7.5/Example_7_5.sce b/479/CH7/EX7.5/Example_7_5.sce
new file mode 100755
index 000000000..6fc292e8c
--- /dev/null
+++ b/479/CH7/EX7.5/Example_7_5.sce
@@ -0,0 +1,158 @@
+//Chemical Engineering Thermodynamics
+//Chapter 7
+//Ideal Gases
+
+//Example 7.5
+clear;
+clc;
+
+//Given
+P1 = 1;//Initial pressure of air in atm
+T1 = 15+273;//Initial temperature in K
+P2 = 5;//Final pressure of air in atm
+T2 = 15+273;//Final temperature in K
+Cv = 5;//specific heat of air at constant volume in Kcal/Kgmole K
+Cp = 7;//specific heat of air at constant pressure in Kcal/Kgmole K
+R = 0.082;//gas constant in atm-m^3/Kgmole K
+R1 = 2;//gas constant in Kcal/Kgmole K
+//From the P-V diagram given in page no 155:
+//Line 12 represents Isothermal process
+//Line b2,c2 & 1a represent Isometric process
+//Line a2 & 1c represent Isobaric process
+//Line 1b reprsent Adiabatic process
+
+//To find Approx Value
+function[A]=approx(V,n)
+ A=round(V*10^n)/10^n;//V-Value n-To what place
+ funcprot(0)
+endfunction
+
+//To Compute del_H, del_E, Q, W, del_S for the processes given above.
+//To indicate the quantities that are state functions
+//To verify that the work required in an isothermal process is less than that in an adiabatic process
+
+//Basis:1 Kgmole of air
+V1 = (R*T1)/P1;//Initial volume in cubic meter
+V2 = (R*T2)/P2;//Final volume in cubic meter
+
+//(i)Isothermal path 12
+//Equations 7.7 to 7.9 will be used (page no 145)
+del_E_12 = Cv*(T2-T1);
+del_H_12 = Cp*(T2-T1);
+W_12 = R1*T1*log(P1/P2);
+Q_12 = W_12;
+del_S_12 = approx((R1*log(P1/P2)),4);
+mprintf('\n(i)For isothermal process or path 12 change in internal energy is %f',del_E_12);
+mprintf('\n For isothermal process or path 12 change in enthalpy is %f',del_H_12);
+mprintf('\n For isothermal process or path 12 heat released is %f Kcal',Q_12);
+mprintf('\n For isothermal process or path 12 work is %f Kcal',W_12);
+mprintf('\n For isothermal process or path 12 change in entropy is %f Kcal/Kgmole K',del_S_12);
+
+//(ii)Path 1a2 = 1a(isometric)+a2(isobaric)
+//Equation 7.1 to 7.6 will be used (page no 144 & 145)
+Pa = P2;
+Ta = (Pa/P1)*T1;//in K
+Q_1a = Cv*(Ta-T1);
+del_E_1a = Q_1a;
+del_H_1a = Cp*(Ta-T1);
+W_1a = 0;// Constant volume process
+del_E_a2 = Cv*(T2-Ta);
+del_H_a2 = Cp*(T2-Ta);
+Q_a2 = del_H_a2;
+W_a2 = P2*(V2-V1)*((10^4*1.03)/427);
+del_H_1a2 = del_H_1a+del_H_a2;
+del_E_1a2 = del_E_1a+del_E_a2;
+Q_1a2 = Q_1a+Q_a2;
+W_1a2 = W_1a+W_a2;
+del_S_1a = Cv*log(Ta/T1);
+del_S_a2 = Cp*log(T2/Ta);
+del_S_1a2 = approx((del_S_1a+del_S_a2),4);
+mprintf('\n\n(ii)For path 1a2 change in internal energy is %f',del_E_1a2);
+mprintf('\n For path 1a2 change in enthalpy is %f',del_H_1a2);
+mprintf('\n For path 1a2 heat released is %f Kcal',Q_1a2);
+mprintf('\n For path 1a2 work is %f Kcal',W_1a2);
+mprintf('\n For path 1a2 change in entropy is %f Kcal/Kgmole K',del_S_1a2);
+
+//(iii)Path 1b2 = 1b(adiabatic)+b2(isometric)
+//From equation 7.11 (page no 146)
+y = Cp/Cv;
+Tb = T1*((V1/V2))^(y-1);
+//From equation 7.1 to 7.3,7.10 & 7.21,(page no 144,146,147)
+Q_1b = 0;//adiabatic process
+del_E_1b = Cv*(Tb-T1);
+del_H_1b = Cp*(Tb-T1);
+W_1b = -del_E_1b;
+Q_b2 = Cv*(T1-Tb);
+del_H_b2 = Cp*(T1-Tb);
+W_b2 = 0;//constant volume prcess
+del_E_b2 = Cv*(T2-Tb);
+del_H_1b2 = del_H_1b+del_H_b2;
+del_E_1b2 = del_E_1b+del_E_b2;
+W_1b2 = W_1b+W_b2;
+Q_1b2 = Q_1b+Q_b2;
+del_S_1b2 = approx((Cv*log(T1/Tb)),4);
+mprintf('\n\n(iii)For path 1b2 change in internal energy is %f',del_E_1b2);
+mprintf('\n For path 1b2 change in enthalpy is %f',del_H_1b2);
+mprintf('\n For path 1b2 heat released is %f Kcal',Q_1b2);
+mprintf('\n For path 1b2 work is %f Kcal',W_1b2);
+mprintf('\n For path 1b2 change in entropy is %f Kcal/Kgmole K',del_S_1b2);
+
+//(iv)Path 1c2 = 1c(isobaric)+c2(isometric);
+Pc = P1;
+Vc = V2;
+Tc = (Pc/P2)*T2;
+del_E_1c = Cv*(Tc-T1);
+Q_1c = Cp*(Tc-T1);
+del_H_1c = Q_1c;
+W_1c = P1*(Vc-V1)*((10^4*1.03)/427);
+del_E_c2 = Cv*(T2-Tc);
+Q_c2 = del_E_c2;
+del_H_c2 = Cp*(T2-Tc);
+W_c2 = 0;//constant volume process
+del_E_1c2 = del_E_1c+del_E_c2;
+del_H_1c2 = del_H_1c+del_H_c2;
+Q_1c2 = Q_1c+Q_c2;
+W_1c2 = W_1c+W_c2;
+del_S_1c = Cp*log(Tc/T1);
+del_S_c2 = Cv*log(T2/Tc);
+del_S_1c2 = approx((del_S_1c+del_S_c2),4);
+mprintf('\n\n(iv)For path 1c2 change in internal energy is %f',del_E_1c2);
+mprintf('\n For path 1c2 change in enthalpy is %f',del_H_1c2);
+mprintf('\n For path 1c2 heat released is %f Kcal',Q_1c2);
+mprintf('\n For path 1c2 work is %f Kcal',W_1c2);
+mprintf('\n For path 1c2 change in entropy is %f Kcal/Kgmole K',del_S_1c2);
+
+//Determination of state & path functions
+if((del_E_12 == del_E_1a2)&(del_E_12 == del_E_1b2)&(del_E_12 == del_E_1c2))
+ mprintf('\n\n del_E is a state function');
+else
+ mprintf('\n\n del_E is a path function');
+end
+if((del_H_12 == del_H_1a2)&(del_H_12 == del_H_1b2)&(del_H_12 == del_H_1c2))
+ mprintf('\n\n del_H is a state function');
+else
+ mprintf('\n\n del_H is a path function');
+end
+if(del_S_12 == del_S_1a2)&(del_S_12 == del_S_1b2)&(del_S_12 == del_S_1c2)
+ mprintf('\n\n del_S is a state function');
+else
+ mprintf('\n\n del_S is a path function');
+end
+if((Q_12 == Q_1a2)&(Q_12 == Q_1b2)&(Q_12 == Q_1c2))
+ mprintf('\n\n Q is a state function');
+else
+ mprintf('\n\n Q is a path function');
+end
+if((W_12 == W_1a2)&(W_12 == W_1b2)&(W_12 == W_1c2))
+ mprintf('\n\n W is a state function');
+else
+ mprintf('\n\n W is a path function');
+end
+
+//Comparison of work required by isothermal & adiabatic process
+if(-(W_12)<-(W_1b2))
+ mprintf('\n\n Work required by isothermal process is less than the work required by an adiabatic process');
+else
+ mprintf('\n\n Statement is incorrect');
+end
+//end