diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /479/CH14/EX14.7 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '479/CH14/EX14.7')
-rwxr-xr-x | 479/CH14/EX14.7/Example_14_7.sce | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/479/CH14/EX14.7/Example_14_7.sce b/479/CH14/EX14.7/Example_14_7.sce new file mode 100755 index 000000000..f7ce60dcd --- /dev/null +++ b/479/CH14/EX14.7/Example_14_7.sce @@ -0,0 +1,140 @@ +//Chemical Engineering Thermodynamics
+//Chapter 14
+//Thermodynamics of Chemical Reactions
+
+//Example 14.7
+clear;
+clc;
+
+//Given
+//SO2 + (1/2)O2 - SO3
+//Basis: 1 Kgmole of SO2
+n_SO2 = 1;// SO2 fed in Kgmole
+n_O2 = n_SO2;//O2 fed in kgmole
+
+//To Calculate the conversion of SO2 to SO3 at 1atm and at various temperature
+//(1)Calculate the conversion of SO2 to SO3
+P = 1;//Pressure in atm
+T = 850;//Temperature in K
+m = 1-1-(1/2);
+//From example 14.6
+Ta = [700 800 825 850 900 1000 1100 1300 1500];
+Ka = [395.40 52.51 34.60 23.44 11.59 3.527 1.48 0.398 0.0016];
+clf;
+xset('window',2);
+plot2d(Ta,Ka,style=3);
+xtitle("Equilibrium constant vs Temperature","Temperature in K","Ka");
+Ka1 = interpln([Ta;Ka],850);
+//Let Nc be the moles of SO3 at equilibrium
+Nc = [0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 0.930 0.95 0.98 0.988 0.989 0.9895 0.9897 0.9899 0.9900];
+//From equation 14.49 (page no 320) and using the given data ,we got equation (b) (page no 323)
+for i = 1:17
+ Ka(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
+end
+xset('window',1);
+plot2d(Nc,Ka,style=2);
+xtitle("Equilibrium constant vs Kgmoles of SO3","Kg moles of SO3","Ka");
+Nc1 = interpln([Ka;Nc],Ka1);
+C = Nc1*100/n_SO2;
+mprintf('(1)The conversion of SO2 to SO3 at 1atm and 850K is %f percent',C);
+
+//(2)Calculation of conversion at 1 atm and 850 K under the following conditions
+//(i) Given:
+n_N2 = 3.75;//Kgmoles of N2 fed
+//Let Nc be the moles of SO3 at equilibrium
+Nc = [0.85 0.87 0.90];
+//From equation 14.49 (page no 320) and using the given data ,we got equation (c) (page no 324)
+for i = 1:3
+ Ka2(i) = (((+n_N2+n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
+end
+xset('window',1);
+plot2d(Nc,Ka2,style=5);
+Nc2 = interpln([Ka2';Nc],Ka1);
+C2 = Nc2*100/n_SO2;
+mprintf('\n\n (2)(i)The conversion of SO2 to SO3 at 1 atm and 850 K when inert gas is also added is %f percent',C2);
+
+//(ii)SO3 is also sent along the original feed
+n_SO3 = 1;//Kgmoles of SO3 fed
+//Let Nc be the moles of SO3 at equilibrium
+Nc = [0.80 0.86 0.92];
+//From equation 14.49 (page no 320) and using the given data ,we got equation (d) (page no 326)
+for i = 1:3
+ Ka3(i) = (((+n_SO3+n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*((n_SO3+Nc(i))/(n_SO2-Nc(i)));
+end
+xset('window',1);
+plot2d(Nc,Ka3,style=6);
+Nc3 = interpln([Ka3';Nc],Ka1);
+C3 = Nc3*100/n_SO2;
+mprintf('\n (ii)The conversion of SO2 to SO3 at 1 atm and 850 K when SO3 is also added along the original feed is %f percent',C3);
+
+//(iii)Variation of SO2 to O2 ratio:
+//(a)SO2:O2 = 1:1 ; This has been worked out in part 1
+mprintf('\n (iii)(a)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:1 is %f percent',C);
+Xc = Nc1/(n_SO2+n_O2-0.5*Nc1);
+
+//(b)SO2:O2 = 1.1:0.5,Now
+n_SO2 = 1.1;//Kgmoles of SO2 fed
+n_O2 = 0.5;//Kgmoles of O2 fed
+//Let Nc be the moles of SO3 at equilibrium
+Nc = [0.9 0.91 0.92];
+//From equation 14.49 (page no 320) and using the given data ,we got equation (e) (page no 327)
+for i = 1:3
+ Ka4(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
+end
+xset('window',1);
+plot2d(Nc,Ka4,style=1);
+Nc4 = interpln([Ka4';Nc],Ka1);
+C4 = Nc4*100/n_SO2;
+mprintf('\n (iii)(b)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1.1:0.5 is %f percent',C4);
+Xc1 = Nc4/(n_SO2+n_O2-0.5*Nc4);
+
+//(c)SO2:O2 = 1:0.5
+n_SO2 = 1;//Kgmoles of SO2 fed
+n_O2 = 0.5;//Kgmoles of O2 fed
+//Let Nc be the moles of SO3 at equilibrium
+Nc = [0.8 0.85 0.86 0.87];
+//From equation (a)
+for i = 1:4
+ Ka5(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
+end
+xset('window',1);
+plot2d(Nc,Ka5,style=4);
+Nc5 = interpln([Ka5';Nc],Ka1);
+C5 = Nc5*100/n_SO2;
+mprintf('\n (iii)(c)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:0.5 is %f percent',C5);
+Xc2 = Nc5/(n_SO2+n_O2-0.5*Nc5);
+
+if(Xc2>Xc) and (Xc2>Xc1)
+ mprintf('\n SO2:O2 = 1:0.5 gives the maximum concentration of SO3 at equilibrium.');
+else
+ if(Xc1>Xc) and (Xc1>Xc2)
+ mprintf('\n SO2:O2 = 1.1:0.5 gives the maximum concentration of SO3 at equilibrium');
+ else
+ if(Xc>Xc1) and (Xc>Xc2)
+ mprintf('\n SO2:O2 = 1:1 gives the maximum concentration of SO3 at equilibrium');
+ end
+ end
+end
+
+//(3)Conversion of SO2 to SO3 at 50 atm and 850 K when SO2:O2 = 1:1
+n_SO2 = 1;//Kgmole of SO2 fed
+n_O2 = 1;//Kgmoles of O2 fed
+P = 50;//Pressure in atm
+//From figure A.2.9
+phi_SO2 = 0.99;
+phi_SO3 = 0.972;
+phi_O2 = 1;
+//From equation 14.48 (page no320), Ka = Ky*(P^m)*K_phi
+K_phi = phi_SO3/(phi_SO2*(phi_O2^2));
+//Let Nc be the moles of SO3 at equilibrium
+Nc = [0.99 0.985 0.97 0.96];
+for i = 1:4
+ Ka6(i) = K_phi*(P^m)*((((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i))));
+end
+xset('window',1);
+plot2d(Nc,Ka6,style=3);
+Nc6 = interpln([Ka6';Nc],Ka1);
+C = Nc6*100/n_SO2;
+mprintf('\n\n (3)The conversion of SO2 to SO3 at 50atm and 850K when SO2:O2 = 1:1 is %f percent',C);
+legend("1 part","2.(i) part","2.(ii)part","2.(iii).(b)part","2.(iii).(c)part","3 part");
+//end
\ No newline at end of file |