diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /409/CH17 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '409/CH17')
-rwxr-xr-x | 409/CH17/EX17.1/Example17_1.sce | 30 | ||||
-rwxr-xr-x | 409/CH17/EX17.2/Example17_2.sce | 29 | ||||
-rwxr-xr-x | 409/CH17/EX17.3/Example17_3.sce | 49 | ||||
-rwxr-xr-x | 409/CH17/EX17.4/Example17_4.sce | 25 | ||||
-rwxr-xr-x | 409/CH17/EX17.5/Example17_5.sce | 20 | ||||
-rwxr-xr-x | 409/CH17/EX17.6/Example17_6.sce | 20 |
6 files changed, 173 insertions, 0 deletions
diff --git a/409/CH17/EX17.1/Example17_1.sce b/409/CH17/EX17.1/Example17_1.sce new file mode 100755 index 000000000..9fecf8eb1 --- /dev/null +++ b/409/CH17/EX17.1/Example17_1.sce @@ -0,0 +1,30 @@ +clear ; +clc; +// Example 17.1 +printf('Example 17.1\n'); +// Page no. 511 +// Solution + +// Basis : F = 1 mol +F = 1 ;//H2C2O4- [mol] +ex_O2 = 248 ;//Excess air- [%] +f_C = 65/100 ;// Fraction of Carbon which convert to CO2 +P = 101.3 ;// Atmospheric pressure-[kPa] + +// H2C2O4 + 0.5*O2-->2*CO2 + H2O +// H2C2O4 -->2*CO + H2O + 0.5*O2 +O2_req = F*0.5 ;// O2 required by the above reaction-[mol] +O2_in = (1 + ex_O2*F/100)*0.5 ;// Mol. of O2 entering + +// Use Elemental balance moles of species in output +n_CO2 = f_C*2 ;// [mol] +n_H2O = (2*F)/2 ;// From 2H balance-[mol] +n_N2 = ((O2_in*0.79)/(0.21)) ;// From 2N balance-[mol] +n_CO = 2-n_CO2 ;// From C balance-[mol] +n_O2 = ((4 + O2_in*2)-(n_H2O + n_CO + 2*n_CO2))/2 ;// From O2 balance-[mol] +total_mol = n_CO2 + n_H2O + n_N2 + n_CO + n_O2 ;// Total moles in output stream-[mol] +y_H2O = n_H2O/total_mol ;// Mole fraction of H2O +pp_H2O = y_H2O*P ;// Partial pressure of H2O-[kPa] + +printf('\nPartial pressure of H2O %.2f kPa.',pp_H2O); +printf('\nUse partial pressure of H2O to get dew point temperature T from steam table: T = 316.5 K');
\ No newline at end of file diff --git a/409/CH17/EX17.2/Example17_2.sce b/409/CH17/EX17.2/Example17_2.sce new file mode 100755 index 000000000..a5241eca3 --- /dev/null +++ b/409/CH17/EX17.2/Example17_2.sce @@ -0,0 +1,29 @@ +clear ; +clc; +// Example 17.2 +printf('Example 17.2\n'); +//Page no. 517 +// Solution Fig E17.2b + +gas = 1 ;// Entering gas-[g mol] +T = 26 ;// Temperature (for isothermal process)-[degree C] +// From fig. its clear that at 26 C saturation pressure is at point A +// Get vapour pressure of benzene from Perry handbook or CD,it is +vp = 99.7 ;// vapour pressure of benzene at 26 C-[mm of Hg] + +// Analysis of entering gas +f_C6H6 = 0.018 ;// Mol fraction of benzene +f_air = 0.982 ;// Mol fraction of air +mol_C6H6 = 0.018*gas ;// Moles of benzene-[g mol] +mol_air = 0.982*gas ;// Moles of air-[g mol] + +// Analysis of exit gas +C6H6_rec = 95/100 ;// Fraction of benzene recovered +C6H6_out = 1-C6H6_rec ;//Fraction of benzene in exit stream +C6H6_out = mol_C6H6*C6H6_out ;//Moles of benzene in exit stream-[g mol] +air_out = mol_air ;//Moles of air in exit stream-[g mol] +total_mol = C6H6_out+air_out ;// Total moles in exit stream +y_C6H6_out = C6H6_out/total_mol ;// Mole fraction of benzene in exit +P = vp/y_C6H6_out ;// Pressure total of exit + +printf('\n Pressure total at exit of compressor %.2e mm of Hg.',P);
\ No newline at end of file diff --git a/409/CH17/EX17.3/Example17_3.sce b/409/CH17/EX17.3/Example17_3.sce new file mode 100755 index 000000000..f522f54e4 --- /dev/null +++ b/409/CH17/EX17.3/Example17_3.sce @@ -0,0 +1,49 @@ +clear ;
+clc;
+// Example 17.3
+printf('Example 17.3\n');
+// Page no. 519
+// Solution Fig E17.3b
+
+// Given
+// coal analysis from handbook
+ex_air = .4 ;// Fraction of excess air required
+w_C = 12 ;// Mol. wt. of C-[g]
+mol_C = 71/w_C ;//[kg mol]
+w_H2 = 2.016 ;// Mol. wt. of H2 - [g]
+mol_H2 = 5.6/w_H2;
+air_O2 = 0.21;// Fraction of O2 in air
+air_N2 = 0.79;// Fraction of N2 in air
+
+// Natural Gas
+// Basis = 1 kg mol C
+// CH4 + 2O2 --> CO2 + 2H2O .... Eqn. (a)
+CO2_1 = 1 ;// By Eqn. (a) CO2 produced -[kg mol]
+H2O_1 = 2 ;// By Eqn. (a) H2O produced -[kg mol]
+Req_O2_1 = 2 ;// By Eqn. (a) -[kg mol]
+ex_O2_1 = Req_O2_1*ex_air ;// Excess O2 required -[kg mol]
+O2_1 = Req_O2_1 + ex_O2_1 ;// Total O2 required - [kg mol]
+N2_1 = O2_1*(air_N2/air_O2) ;//Total N2 required - [kg mol]
+Total_1 = CO2_1 + H2O_1 + N2_1 + ex_O2_1 ;// Total gas produced- [kg mol]
+
+// Coal
+// C + O2 --> CO2 ..eqn (b)
+// H2 + 1/2(O2) --> H2O.... eqn (c)
+CO2_2 = 1 ;// By Eqn. (a) CO2 produced -[kg mol]
+H2O_2 = mol_H2/mol_C ;// By Eqn. (a) H2O produced -[kg mol]
+Req_O2_2 = 1 + (mol_H2/mol_C)*(1/2) ;// By Eqn. (b) and (c) -[kg mol]
+ex_O2_2 = Req_O2_2*ex_air ;// Excess O2 required -[kg mol]
+O2_2 = Req_O2_2 + ex_O2_2; // Total O2 required - [kg mol]
+N2_2 = O2_2*(air_N2/air_O2); //Total N2 required - [kg mol]
+Total_2 = CO2_2 + H2O_2 + N2_2 + ex_O2_2 ;// Total gas produced- [kg mol]
+
+// Let P (total pressure) = 100 kPa
+P = 100 ;// Total pressure -[kPa]
+p1 = P*(H2O_1/Total_1) ;// Partial pressure of water vapour in natural gas - [kPa]
+Eq_T1 = 52.5 ;// Equivalent temperature -[degree C]
+p2 = P*(H2O_2/Total_2) ;// Partial pressure of water vapour in coal - [kPa]
+Eq_T2 = 35 ;// Equivalent temperature -[degree C]
+printf(' Natural gas Coal\n')
+printf(' ---------------------- --------------------\n')
+printf('Partial pressure: %.1f kPa %.1f kPa\n',p1,p2 ) ;
+printf('Equivalent temperature: %.1f C %.1f C\n',Eq_T1,Eq_T2 );
\ No newline at end of file diff --git a/409/CH17/EX17.4/Example17_4.sce b/409/CH17/EX17.4/Example17_4.sce new file mode 100755 index 000000000..eccc583d1 --- /dev/null +++ b/409/CH17/EX17.4/Example17_4.sce @@ -0,0 +1,25 @@ +clear ; +clc; +// Example 17.4 +printf('Example 17.4\n\n'); +//Page no. 522 +// Solution Fig E17.4 + +F = 30 ;// Volume of initial gas-[m^3] +P_F = 98.6 ;// Pressure of gas-[kPa] +T_F = 273+100 ;// Temperature of gas-[K] +P_p = 109 ;//[kPa] +T_p = 14+273 ;// Temperature of gas-[K] +R = 8.314 ;// [(kPa*m^3)/(k mol*K)] +// Additional condition +vpW_30 = 4.24 ;//Vapour pressure-[kPa] +vpW_14 = 1.60 ;//Vapour pressure-[kPa] +n_F = (P_F*F)/(R*T_F) ;// Number of moles in F + +// Material balance to calculate P & W +P = (n_F*((P_F-vpW_30)/P_F))/((P_p-vpW_14)/P_p) ;// P from mat. bal. of air -[kg mol] +W = (n_F*(vpW_30/P_F))- P*(vpW_14/P_p); // W from mat. bal. of water -[kg mol] +iW = n_F*(vpW_30/P_F) ;// Initial amount of water -[kg mol] +fr_con = W/iW ;//Fraction of water condenseed + +printf('\n Fraction of water condenseed %.3f.',fr_con);
\ No newline at end of file diff --git a/409/CH17/EX17.5/Example17_5.sce b/409/CH17/EX17.5/Example17_5.sce new file mode 100755 index 000000000..e5b16face --- /dev/null +++ b/409/CH17/EX17.5/Example17_5.sce @@ -0,0 +1,20 @@ +clear; +clc; +// Example 17.5 +printf('Example 17.5\n'); +//Page no. 527 +// Solution Fig E17.5 + +P = 100 ;// Pressure of air-[kPa] +T = 20 + 273 ;// Temperature of air-[K] +R = 8.314 ;// [(kPa*m^3)/(k mol*K)] +EOH = 6 ;// Amount of ethyl alcohol to evaporate-[kg] +mw_EOH = 46.07 ;// Mol.wt. of 1 k mol ethyl alcohol-[kg] +// Additional data needed +vp_EOH = 5.93 ;// Partial pressure of alcohol at 20 C-[kPa] +vp_air = P-vp_EOH ;// Partial pressure of air at 20 C-[kPa] +n_EOH = EOH/mw_EOH ;//Moles of ethyl alcohol -[kg mol] +n_air = (n_EOH*vp_air)/vp_EOH ;// Moles of air -[kg mol] +V_air = n_air*R*T/P ;// Volume of air required + +printf('\n Volume of air required to evaporate 6 kg of ethyl alcohol is %.1f cubic metre . \n',V_air);
\ No newline at end of file diff --git a/409/CH17/EX17.6/Example17_6.sce b/409/CH17/EX17.6/Example17_6.sce new file mode 100755 index 000000000..ccf7fc101 --- /dev/null +++ b/409/CH17/EX17.6/Example17_6.sce @@ -0,0 +1,20 @@ +clear ; +clc; +// Example 17.6 +printf('Example 17.6\n\n'); +//Page no. 529 +// Solution + +P = 760 ;// Pressure -[ mm of Hg] +// Get vapour pressure of n-heptane from Perry, 40 mm of Hg +vp = 40 ;// vapour pressure of n-heptane-[mm of Hg] + +// Use the 2nd relation given in problem to find K +K = 10^((log10(vp/P)-0.16)/1.25) ; + +// Get t using the 1st relation in the question +// For t_half +x = 0.5 ;// mole fraction after t_half +x0 = 1 ;// initial mole fraction +t_half = (log(x/x0))/(-K);// Time required to reduce the concentration to one-half-[min] +printf('Time required to reduce the concentration to one-half is %.1f min. \n',t_half);
\ No newline at end of file |