diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /389/CH3/EX3.5 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '389/CH3/EX3.5')
-rwxr-xr-x | 389/CH3/EX3.5/Example3_5.sce | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/389/CH3/EX3.5/Example3_5.sce b/389/CH3/EX3.5/Example3_5.sce new file mode 100755 index 000000000..932326e6b --- /dev/null +++ b/389/CH3/EX3.5/Example3_5.sce @@ -0,0 +1,55 @@ +clear;
+clc;
+
+// Illustration 3.5
+// Page: 73
+
+printf('Illustration 3.5 - Page: 73\n\n');
+
+// solution
+
+//****Data****//
+velocity = 15;// [m/s]
+G = 21.3;// [kg/square m.s]
+//******//
+
+// Since the experimental data do not include the effects of changing Prandtl number.
+
+// Jh = (h/(Cp*density*viscosity)) = (h/Cp*G)*(Pr^(2/3)) = Shi(Re);
+
+// Shi(Re) must be compatible with 21.3*(G^0.6);
+// Let Shi(Re) = b*(Re^n);
+// Re = (l*G)/viscosity;
+
+// h = (Cp*G/(Pr^(2/3)))*b*(Re^n);
+// h = (Cp*G/(Pr^(2/3)))*b*((l*b/viscosity)^n) = 21.3*(G^0.6);
+
+n = 0.6-1;
+// b = 21.3*((Pr^(2/3))/Cp)*((l/viscosity)^(-n));
+
+// Using data for air at 38 C & 1 std atm.
+Cp1 = 1002;// [kJ/kg.K]
+viscosity1 = 1.85*10^(-5);//[kg/m.s]
+k1 = 0.0273;//[W/m.K]
+Pr1 = (Cp1*viscosity1)/k1;
+b_prime = 21.3*(Pr1^(2/3)/Cp1)*((1/viscosity1)^0.4);
+// b = b_prime*l^(0.4);
+// Jh = (h/(Cp*G))*Pr^(2/3) = b_prime*((l/Re)^(0.4)) = Shi(Re);
+
+// The heat mass transfer analogy will be used to estimate the mass transfer coefficient. (Jd = Jh)
+
+// Jd = (KG*Pbm*Mav*Sc^(2/3))/(density*viscosity) = Shi(Re) = b_prime*((l/Re)^0.4);
+
+// KG*Pbm = F = (b_prime*density*viscosity)/(Re^0.4*Mav*Sc^(2/3)) = (b_prime*(density*velocity)^0.6*(viscosity^0.4))/(Mav*Sc^(2/3));
+
+// For H2-H20, 38 C, 1std atm
+viscosity2 = 9*10^(-6);// [kg/m.s]
+density2 = 0.0794;// [kg/cubic m]
+Dab = 7.75*10^(-5);// [square m/s]
+Sc = viscosity2/(density2*Dab);
+
+// Assuming desity, Molecular weight and viscosity of the gas are essentially those of H2
+
+Mav = 2.02;// [kg/kmol]
+F = (b_prime*(density2*velocity)^0.6*(viscosity2^0.4))/(Mav*Sc^(2/3));// [kmol/square m.s]
+printf('The required mass transfer: %f kmol/square m.s',F);
\ No newline at end of file |