summaryrefslogtreecommitdiff
path: root/3872/CH10
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3872/CH10
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3872/CH10')
-rw-r--r--3872/CH10/EX10.1/EX10_1.JPGbin0 -> 44369 bytes
-rw-r--r--3872/CH10/EX10.1/EX10_1.sce36
-rw-r--r--3872/CH10/EX10.10/EX10_10.JPGbin0 -> 31323 bytes
-rw-r--r--3872/CH10/EX10.10/EX10_10.sce31
-rw-r--r--3872/CH10/EX10.2/EX10_2.JPGbin0 -> 34622 bytes
-rw-r--r--3872/CH10/EX10.2/EX10_2.sce28
-rw-r--r--3872/CH10/EX10.3/EX10_3.JPGbin0 -> 31237 bytes
-rw-r--r--3872/CH10/EX10.3/EX10_3.sce33
-rw-r--r--3872/CH10/EX10.4/EX10_4.JPGbin0 -> 14190 bytes
-rw-r--r--3872/CH10/EX10.4/EX10_4.sce31
-rw-r--r--3872/CH10/EX10.8/EX10_8.JPGbin0 -> 31707 bytes
-rw-r--r--3872/CH10/EX10.8/EX10_8.sce26
-rw-r--r--3872/CH10/EX10.9/EX10_9.JPGbin0 -> 12257 bytes
-rw-r--r--3872/CH10/EX10.9/EX10_9.sce20
14 files changed, 205 insertions, 0 deletions
diff --git a/3872/CH10/EX10.1/EX10_1.JPG b/3872/CH10/EX10.1/EX10_1.JPG
new file mode 100644
index 000000000..2c14ac314
--- /dev/null
+++ b/3872/CH10/EX10.1/EX10_1.JPG
Binary files differ
diff --git a/3872/CH10/EX10.1/EX10_1.sce b/3872/CH10/EX10.1/EX10_1.sce
new file mode 100644
index 000000000..8b81d884a
--- /dev/null
+++ b/3872/CH10/EX10.1/EX10_1.sce
@@ -0,0 +1,36 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 10 ; Example 10.1
+//Scilab Version - 6.0.0 ; OS - Windows
+clc;
+clear;
+CTratio=100/5; //CT ratio
+Zs=0.082; //Secondary resistance of a 100:5 CT in Ohm
+IZB=[5 0.5; 8 0.8; 15 1.5]; //Secondary output current in Amperes and burden resistance in Ohm
+E=(Zs+IZB(1,2))*IZB(1,1); //Secondary Excitation voltage in Volts
+printf('\nCase: a');
+printf('\nThe Secondary excitation voltage is %0.4f Volts',E);
+Ie=0.25 //Secondary Excitation current for the secondary voltage from figure !0.8 in Amperes
+printf('\nThe Secondary excitation current is %0.4f Amperes',Ie);
+I=CTratio*(IZB(1,1)+Ie); //Primary current of the CT in Amperes
+printf('\nThe Primary current is %d Amperes',I);
+CTerr=Ie*100/(IZB(1,1)+Ie)'; //Error in CT
+printf('\nThe error of the CT is %0.4f percentage',CTerr);
+E=(Zs+IZB(2,2))*IZB(2,1); //Secondary Excitation voltage in Volts
+printf('\n\nCase: b');
+printf('\nThe Secondary excitation voltage is %0.4f Volts',E);
+Ie=0.4 //Secondary Excitation current for the secondary voltage from figure !0.8 in Amperes
+printf('\nThe Secondary excitation current is %0.4f Amperes',Ie);
+I=CTratio*(IZB(2,1)+Ie); //Primary current of the CT in Amperes
+printf('\nThe Primary current is %d Amperes',I);
+CTerr=Ie*100/(IZB(2,1)+Ie)'; //Error in CT
+printf('\nThe error of the CT is %0.4f percentage',CTerr);
+E=(Zs+IZB(3,2))*IZB(3,1); //Secondary Excitation voltage in Volts
+printf('\n\nCase: c');
+printf('\nThe Secondary excitation voltage is %0.4f Volts',E);
+Ie=20 //Secondary Excitation current for the secondary voltage from figure !0.8 in Amperes
+printf('\nThe Secondary excitation current is %0.4f Amperes',Ie);
+I=CTratio*(IZB(3,1)+Ie); //Primary current of the CT in Amperes
+printf('\nThe Primary current is %d Amperes',I);
+CTerr=Ie*100/(IZB(3,1)+Ie)'; //Error in CT
+printf('\nThe error of the CT is %0.4f percentage',CTerr);
diff --git a/3872/CH10/EX10.10/EX10_10.JPG b/3872/CH10/EX10.10/EX10_10.JPG
new file mode 100644
index 000000000..5d74b5458
--- /dev/null
+++ b/3872/CH10/EX10.10/EX10_10.JPG
Binary files differ
diff --git a/3872/CH10/EX10.10/EX10_10.sce b/3872/CH10/EX10.10/EX10_10.sce
new file mode 100644
index 000000000..1e6891a82
--- /dev/null
+++ b/3872/CH10/EX10.10/EX10_10.sce
@@ -0,0 +1,31 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 10 ; Example 10.10
+//Scilab Version - 6.0.0 ; OS - Windows
+
+clc;
+clear;
+
+Srated = 30; //power rating in MVA
+Vprtr = 34.5; //primary side of transformer voltage in kV
+Vsectr = 138; //secondary side of transformer voltage in kV
+IArated = (Srated*10^6)/(sqrt(3)*Vsectr*10^3); //Rated current on the 138-kV side of the transformer in Amperes
+CTratiosec = 150/5; //CT ratio on the 138-kV side
+IA = IArated/CTratiosec; //differential current in 138kV side in Amperes
+Iarated = (Srated*10^6)/(sqrt(3)*Vprtr*10^3); //Rated current on the 34.5-kV side of the transformer in Amperes
+CTratiopr = 500/5; //CT ratio on the 34.5-kV side
+Ia = Iarated/CTratiopr; //differential current in 138kV side in Amperes
+Iab = Ia*sqrt(3); //diffrential current in lefthand re-straining winding of figure 10.37 in Amperes
+crtratio = Iab/IA; //ratio of the currents in the left- to righthand restraining winding
+TA = 5;
+Tab = 10;
+tapratio = Tab/TA; //closest relay tap ratio
+%mismatch = (((Iab/Tab)-(IA/TA))/(Iab/Tab))*100; //percentage mismatch for tap setting
+printf('\nRated current on the 138kV side of the transformer is %f A',IArated);
+printf('\nRated current on CT ratio in 138 kV side of the transformer is %f A',IA);
+printf('\nRated current on the 34.5kV side of the transformer is %f A',Iarated);
+printf('\nRated current on CT ratio in 34.5kV side of the transformer is %f A',Ia);
+printf('\nThe percentage mismatch for the tap setting is %f',%mismatch);
+
+
+
diff --git a/3872/CH10/EX10.2/EX10_2.JPG b/3872/CH10/EX10.2/EX10_2.JPG
new file mode 100644
index 000000000..53634fc0a
--- /dev/null
+++ b/3872/CH10/EX10.2/EX10_2.JPG
Binary files differ
diff --git a/3872/CH10/EX10.2/EX10_2.sce b/3872/CH10/EX10.2/EX10_2.sce
new file mode 100644
index 000000000..046ec038d
--- /dev/null
+++ b/3872/CH10/EX10.2/EX10_2.sce
@@ -0,0 +1,28 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 10 ; Example 10.2
+//Scilab Version - 6.0.0 ; OS - Windows
+clc;
+clear;
+Irelay=200 //Current through the relay in Amperes
+CTratio=100/5; //CT ratio
+Zs=0.082; //Secondary resistance of a 100:5 CT in Ohm
+IZB=[8 0.8; 8 3]; //Secondary output current in Amperes and burden resistance in Ohm
+E=(Zs+IZB(1,2))*IZB(1,1); //Secondary Excitation voltage in Volts
+Ie=0.40 //Secondary Excitation current for the secondary voltage from figure !0.8 in Amperes
+I=CTratio*(IZB(1,1)+Ie); //Primary current of the CT in Amperes
+printf('\nCase: a');
+if (Irelay>I) then
+ printf('\nWith the burden resistance of %0.2f Ohm, the minimum primary current required is %d Amperes.\nTherefore the relay will operate because of the 200 Amperes fault current',IZB(1,2),I)
+else
+ printf('\nWith the burden resistance of %0.2f Ohm, the minimum primary current required is %d Amperes.\nTherefore the relay will not operate because of the 200 Amperes fault current',IZB(1,2),I);
+end
+E=(Zs+IZB(2,2))*IZB(2,1); //Secondary Excitation voltage in Volts
+Ie=30 //Secondary Excitation current for the secondary voltage from figure !0.8 in Amperes
+I=CTratio*(IZB(2,1)+Ie); //Primary current of the CT in Amperes
+printf('\n\nCase: b');
+if (Irelay>I) then
+ printf('\nWith the burden resistance of %0.2f Ohm, the minimum primary current required is %d Amperes.\nTherefore the relay will operate because of the 200 Amperes fault current',IZB(2,2),I)
+else
+ printf('\nWith the burden resistance of %0.2f Ohm, the minimum primary current required is %d Amperes.\nTherefore the relay will not operate because of the 200 Amperes fault current',IZB(2,2),I);
+end
diff --git a/3872/CH10/EX10.3/EX10_3.JPG b/3872/CH10/EX10.3/EX10_3.JPG
new file mode 100644
index 000000000..e9402b77b
--- /dev/null
+++ b/3872/CH10/EX10.3/EX10_3.JPG
Binary files differ
diff --git a/3872/CH10/EX10.3/EX10_3.sce b/3872/CH10/EX10.3/EX10_3.sce
new file mode 100644
index 000000000..981afb01b
--- /dev/null
+++ b/3872/CH10/EX10.3/EX10_3.sce
@@ -0,0 +1,33 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 10 ; Example 10.3
+//Scilab Version - 6.0.0 ; OS - Windows
+clc;
+clear;
+Crnttap=6; //Current tap setting in Amperes
+TDsetting=1; //Time dial setting
+CTratio=100/5; //CT ratio
+IZB=[5 0.5; 8 0.8; 15 1.5]; //Secondary output current in Amperes and burden resistance in Ohm
+RC_multiple_Crntap=IZB(1,1)/Crnttap; //Relay current in the multiple of the current tap setting
+printf('\nCase: a');
+if (RC_multiple_Crntap<1) then
+ printf('\nFor the relay current in the multiple of the current tap setting %0.4f \nThe relay will not operate',RC_multiple_Crntap);
+else
+ printf('\nFor the relay current in the multiple of the current tap setting %0.4f \nThe relay will operate after %0.2f Seconds',RC_multiple_Crntap,time);
+end
+RC_multiple_Crntap=IZB(2,1)/Crnttap; //Relay current in the multiple of the current tap setting
+time=6 //Relay operating time from figure 10.12 in Seconds
+printf('\n\nCase: b');
+if (RC_multiple_Crntap<1) then
+ printf('\nFor the relay current in the multiple of the current tap setting %0.4f \nThe relay will not operate',RC_multiple_Crntap);
+else
+ printf('\nFor the relay current in the multiple of the current tap setting %0.4f \nThe relay will operate after %d Seconds',RC_multiple_Crntap,time);
+end
+RC_multiple_Crntap=IZB(3,1)/Crnttap; //Relay current in the multiple of the current tap setting
+time=1.2 //Relay operating time from figure 10.12 in Seconds
+printf('\n\nCase: c');
+if (RC_multiple_Crntap<1) then
+ printf('\nFor the relay current in the multiple of the current tap setting %0.4f \nThe relay will not operate',RC_multiple_Crntap);
+else
+ printf('\nFor the relay current in the multiple of the current tap setting %0.4f \nThe relay will operate after %0.2f Seconds',RC_multiple_Crntap,time);
+end
diff --git a/3872/CH10/EX10.4/EX10_4.JPG b/3872/CH10/EX10.4/EX10_4.JPG
new file mode 100644
index 000000000..edd36b562
--- /dev/null
+++ b/3872/CH10/EX10.4/EX10_4.JPG
Binary files differ
diff --git a/3872/CH10/EX10.4/EX10_4.sce b/3872/CH10/EX10.4/EX10_4.sce
new file mode 100644
index 000000000..175e0af78
--- /dev/null
+++ b/3872/CH10/EX10.4/EX10_4.sce
@@ -0,0 +1,31 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 10 ; Example 10.4
+//Scilab Version - 6.0.0 ; OS - Windows
+clc;
+clear;
+S_Ifmax_CTratio=[11 3000 400/5;4 2000 200/5;6 100 200/5]; //Apparent power in MVA , maximum fault current in Amperes and CT ratio
+V=34.5; //RMS line to line voltage in kVolts
+Tbreaker=0.083; //Operating time of breaker for 5 cycles in Second
+Tcoordination=0.3; //Co-ordination time of the breaker in Seconds
+Il3=S_Ifmax_CTratio(3,1)*10^(3)/(V*sqrt(3)*S_Ifmax_CTratio(3,3)); //Maximum secondary current of breaker 3 in Ampere
+Ts3=3; //From figure 10.12 the Tap Setting
+Il2=(S_Ifmax_CTratio(2,1)+S_Ifmax_CTratio(3,1))*10^(3)/(V*sqrt(3)*S_Ifmax_CTratio(2,3));//Maximum secondary current of breaker 2 in Ampere
+Ts2=5; //From figure 10.12 the Tap Setting
+Il1=(S_Ifmax_CTratio(1,1)+S_Ifmax_CTratio(2,1)+S_Ifmax_CTratio(3,1))*10^(3)/(V*sqrt(3)*S_Ifmax_CTratio(1,3));//Maximum secondary current of breaker 1 in Ampere
+Ts1=5; //From figure 10.12 the Tap Setting
+Fault_pickupcrnt3=S_Ifmax_CTratio(2,2)/(Ts3*S_Ifmax_CTratio(3,3)); //The fault-to-pickup current ratio at Breaker 3
+t3=0.05; //Relay operating time from figure 10.12 in Seconds
+tds3=0.5; //Time-dial settings from figure 10.12
+Fault_pickupcrnt2=S_Ifmax_CTratio(2,2)/(Ts2*S_Ifmax_CTratio(2,3)); //The fault-to-pickup current ratio at Breaker 2
+t2=t3+Tbreaker+Tcoordination;
+tds2=2; //Time-dial settings from figure 10.12
+Fault_pickupcrnt2=S_Ifmax_CTratio(1,2)/(Ts2*S_Ifmax_CTratio(2,3)); //The fault-to-pickup current ratio at Breaker 1
+t2=0.38; //Relay operating time from figure 10.12 in Seconds
+tds1=3; //Time-dial settings from figure 10.12
+Fault_pickupcrnt1=S_Ifmax_CTratio(1,2)/(Ts2*S_Ifmax_CTratio(1,3));
+t1=t2+Tbreaker+Tcoordination;
+printf('\nBreaker\tTS\tTDS');
+printf('\nB1\t%d\t%0.1f',Ts1,tds1);
+printf('\nB2\t%d\t%0.1f',Ts2,tds2);
+printf('\nB3\t%d\t%0.1f',Ts3,tds3);
diff --git a/3872/CH10/EX10.8/EX10_8.JPG b/3872/CH10/EX10.8/EX10_8.JPG
new file mode 100644
index 000000000..247cd3cb3
--- /dev/null
+++ b/3872/CH10/EX10.8/EX10_8.JPG
Binary files differ
diff --git a/3872/CH10/EX10.8/EX10_8.sce b/3872/CH10/EX10.8/EX10_8.sce
new file mode 100644
index 000000000..a872f5d47
--- /dev/null
+++ b/3872/CH10/EX10.8/EX10_8.sce
@@ -0,0 +1,26 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 10 ; Example 10.8
+//Scilab Version - 6.0.0 ; OS - Windows
+clc;
+clear;
+Vln=345; //Source voltage in kVolts
+CTratio=1500/5; //CT ratio
+VTratio=3000/1; //VT ratio
+Imax=1500; //Maximum current during emergency loading in Amperes
+pf=0.95; //Power factor
+positivesequence=[8+%i*50;8+%i*50;5.3+%i*33;4.3+%i*27]; //Positive sequence impedance in Ohms
+Zsec=CTratio/VTratio; //Secondary impedance with respect to primary impedance in Ohms
+Zr1=0.8*positivesequence(1)*Zsec; //B12 zone 1 relay for 80% reach in Ohms
+Zr2=1.2*positivesequence(2)*Zsec; //B12 zone 2 relay for 120% reach in Ohms
+Zr3=(positivesequence(3)*1.2+positivesequence(2))*Zsec //B12 zone 3 relay for 100% reach of line 1–2 and 120% reach of line 2–4 in Ohms
+Z=(Vln*10^(3)*Zsec/sqrt(3))/(Imax*exp(-%i*acos(pf)));
+printf('\nThe magnitude of Zr1 is %0.2f Ohm and its angle is %0.2f degrees',abs(Zr1),atand(imag(Zr1),real(Zr1)));
+printf('\nThe magnitude of Zr2 is %0.2f Ohm and its angle is %0.2f degrees',abs(Zr2),atand(imag(Zr2),real(Zr2)));
+printf('\nThe magnitude of Zr3 is %0.2f Ohm and its angle is %0.2f degrees\n',abs(Zr3),atand(imag(Zr3),real(Zr3)));
+if abs(Z)>abs(Zr3) then
+ printf('\nEmergency impedance exceeds the zone 3 setting\nIt lies outside the trip regions of thethree-zone, directional impedance relay');
+else
+ printf('\nEmergency impedance does not exceed the zone 3 setting\nIt lies inside the trip regions of thethree-zone, directional impedance relay');
+end
+
diff --git a/3872/CH10/EX10.9/EX10_9.JPG b/3872/CH10/EX10.9/EX10_9.JPG
new file mode 100644
index 000000000..b00ceeeb2
--- /dev/null
+++ b/3872/CH10/EX10.9/EX10_9.JPG
Binary files differ
diff --git a/3872/CH10/EX10.9/EX10_9.sce b/3872/CH10/EX10.9/EX10_9.sce
new file mode 100644
index 000000000..b5f8f1c92
--- /dev/null
+++ b/3872/CH10/EX10.9/EX10_9.sce
@@ -0,0 +1,20 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 10 ; Example 10.9
+//Scilab Version - 6.0.0 ; OS - Windows
+
+clc;
+clear;
+
+Srated = 10; //power rating in MVA
+Vprtr = 80; //primary side of transformer voltage in kV
+Vsectr = 20; //secondary side of transformer voltage in kV
+CTratiopr = 150/5; //primary CT ratio
+CTratiosec = 600/5; //secondary CT ratio
+I1rated = (Srated*10^6)/(Vprtr*10^3); //rated current 1 in Amperes
+I2rated = (Srated*10^6)/(Vsectr*10^3); //rated current 2 in Amperes
+I1 = I1rated/CTratiopr; //differential current 1 in Amperes
+I2 = I2rated/CTratiosec; //differential current 2 in Amperes
+I = I1-I2; //differential current at rated conditions in Amperes
+k = 0.5/2.25; //from figure 10.34
+printf('The value of k is %f',k);