summaryrefslogtreecommitdiff
path: root/3845/CH12
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3845/CH12
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3845/CH12')
-rw-r--r--3845/CH12/EX12.1/Ex12_1.sce9
-rw-r--r--3845/CH12/EX12.10/Ex12_10.sce9
-rw-r--r--3845/CH12/EX12.11/Ex12_11.sce9
-rw-r--r--3845/CH12/EX12.2/Ex12_2.sce13
-rw-r--r--3845/CH12/EX12.3/Ex12_3.sce15
-rw-r--r--3845/CH12/EX12.4/Ex12_4.sce9
-rw-r--r--3845/CH12/EX12.5/Ex12_5.sce19
-rw-r--r--3845/CH12/EX12.6/Ex12_6.sce10
-rw-r--r--3845/CH12/EX12.7/Ex12_7.sce9
-rw-r--r--3845/CH12/EX12.8/Ex12_8.sce12
-rw-r--r--3845/CH12/EX12.9/Ex12_9.sce19
11 files changed, 133 insertions, 0 deletions
diff --git a/3845/CH12/EX12.1/Ex12_1.sce b/3845/CH12/EX12.1/Ex12_1.sce
new file mode 100644
index 000000000..50457b802
--- /dev/null
+++ b/3845/CH12/EX12.1/Ex12_1.sce
@@ -0,0 +1,9 @@
+//Example 12.1
+Q=5;//Flow rate (L/min)
+Q=Q/10^3;//Flow rate (m^3/min)
+t=75;//Time (y)
+t=t*(365*24*60);//Time (min)
+V=Q*t;//Volume (m^3)
+printf('Volume of blood pumped in 75 years = %0.1e m^3',V)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.10/Ex12_10.sce b/3845/CH12/EX12.10/Ex12_10.sce
new file mode 100644
index 000000000..26a421fc9
--- /dev/null
+++ b/3845/CH12/EX12.10/Ex12_10.sce
@@ -0,0 +1,9 @@
+//Example 12.10
+rho=1.29;//Density from table (kg/m^3)
+v=40;//Speed (m/s)
+L=7.40*10^-2;//Characteristic length (m)
+eta=1.81*10^-5;//Viscosity from table (Pa.s)
+N_R_v=(rho*v*L)/eta;//Reynolds number
+printf('Reynolds number = %0.2e (object in fluid)',N_R_v)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.11/Ex12_11.sce b/3845/CH12/EX12.11/Ex12_11.sce
new file mode 100644
index 000000000..9fee63003
--- /dev/null
+++ b/3845/CH12/EX12.11/Ex12_11.sce
@@ -0,0 +1,9 @@
+//Example 12.11
+x_rms=1*10^-2;//Root-mean-square distance (m)
+D=6.7*10^-10;//Diffusion constant for glucose molecule in water (m^2/s)
+t=x_rms^2/(2*D);//Time (s)
+t=t/(60*60);//Time (h)
+printf('Time taken for a glucose molecule to move 1 cm in water = %0.2f h',t)
+//Answer varies due to round off error
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.2/Ex12_2.sce b/3845/CH12/EX12.2/Ex12_2.sce
new file mode 100644
index 000000000..188a322d2
--- /dev/null
+++ b/3845/CH12/EX12.2/Ex12_2.sce
@@ -0,0 +1,13 @@
+//Example 12.2
+r1=0.9*10^-2;//Radius of garden hose (m)
+A1=%pi*r1^2;//Cross-sectional area of hose (m^2)
+Q=0.5;//Flow rate (L/s)
+Q=Q/10^3;//Flow rate (m^3/s)
+v1=Q/A1;//Speed of water in the hose (m/s)
+printf('a.Speed of water in the hose = %0.2f m/s',v1)
+r2=0.25*10^-2;//Radius of nozzle (m)
+A2=%pi*r2^2;//Cross-sectional area of nozzle (m^2)
+v2=A1*v1/A2;//Speed of water in the nozzle from continuity equation (m/s)
+printf('\nb.Speed of water in the nozzle = %0.1f m/s',v2)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.3/Ex12_3.sce b/3845/CH12/EX12.3/Ex12_3.sce
new file mode 100644
index 000000000..587b5c9f6
--- /dev/null
+++ b/3845/CH12/EX12.3/Ex12_3.sce
@@ -0,0 +1,15 @@
+//Example 12.3
+Q=5;//Flow rate (L/min)
+Q=Q/(10^3*60);//Flow rate (m^3/s)
+r1=10*10^-3;//Radius of aorta (m)
+A1=%pi*r1^2;//Cross-sectional area of aorta (m^2)
+v1=Q/A1;//Average speed of blood in the aorta (m/s)
+printf('a.Average speed of the blood in the aorta = %0.2f m/s',v1)
+n1=1;//Number of aorta
+r2=(8*10^-6)/2;//Radius of capillary (m)
+A2=%pi*r2^2;//Cross-sectional area of capillary (m^2)
+v2=0.33*10^-3;//Average speed of blood in the capillary (m/s)
+n2=(n1*A1*v1)/(A2*v2);//Number of capillaries
+printf('\nb.Number of capillaries = %0.1e',n2)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.4/Ex12_4.sce b/3845/CH12/EX12.4/Ex12_4.sce
new file mode 100644
index 000000000..3a2aee004
--- /dev/null
+++ b/3845/CH12/EX12.4/Ex12_4.sce
@@ -0,0 +1,9 @@
+//Example 12.4
+P2=1.01*10^5;//Absolute pressure in the nozzle (N/m^2)
+v1=1.96;//Speed of water in the hose (m/s)
+v2=25.5;//Speed of water in the nozzle (m/s)
+rho=10^3;//Density of water (kg/m^3)
+P1=P2+1/2*rho*(v2^2-v1^2);//Abolute pressure in the hose from Bernoulli's equation (N/m^2)
+printf('Absolute pressure in the hose = %0.2e N/m^2',P1)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.5/Ex12_5.sce b/3845/CH12/EX12.5/Ex12_5.sce
new file mode 100644
index 000000000..377afceb5
--- /dev/null
+++ b/3845/CH12/EX12.5/Ex12_5.sce
@@ -0,0 +1,19 @@
+//Example 12.5
+r1=(6.40*10^-2)/2;//Radius of the hose (m)
+A1=%pi*r1^2;//Cross-sectional area of the hose (m^2)
+r2=(3*10^-2)/2;//Radius of the nozzle (m)
+A2=%pi*r2^2;//Cross-sectional area of the nozzle (m^2)
+Q=40;//Flow rate (L/s)
+Q=Q/10^3;//Flow rate (m^3/s)
+v1=Q/A1;//Speed of water in hose (m/s)
+v2=Q/A2;//Speed of water in nozzle (m/s)
+rho=1000;//Density of water (kg/m^3)
+g=9.80;//Acceleration due to gravity (m/s^2)
+h2=10;//Height above ground (m)
+P1=1.62*10^6;//Gauge pressure inside the hose at the start (N/m^2)
+//Taking initial height h1=0 (m)
+P2=P1+1/2*rho*(v1^2-v2^2)-(rho*g*h2);//Nozzle pressure from Bernoulli's equation (N/m^2)
+printf('(Gauge) Pressure in the nozzle = %0.1f N/m^2',P2)
+//The answer provided in the textbook is wrong
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.6/Ex12_6.sce b/3845/CH12/EX12.6/Ex12_6.sce
new file mode 100644
index 000000000..ca2bd1e3c
--- /dev/null
+++ b/3845/CH12/EX12.6/Ex12_6.sce
@@ -0,0 +1,10 @@
+//Example 12.6
+P1=1.62*10^6;//Pressure at the hose inlet, see Example 12.5 (N/m^2)
+P_h=0.7*10^6;//Pressure at hydrant outlet (N/m^2)
+P=P1-P_h;//Pressure increase due to the pump (N/m^2)
+Q=40;//Flow rate, See Example 12.5 (L/s)
+Q=Q/10^3;//Flow rate (m^3/s)
+power=P*Q;//Power (W)
+printf('Power supplied by the pump = %0.1f kW',power/1000)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.7/Ex12_7.sce b/3845/CH12/EX12.7/Ex12_7.sce
new file mode 100644
index 000000000..8400502a6
--- /dev/null
+++ b/3845/CH12/EX12.7/Ex12_7.sce
@@ -0,0 +1,9 @@
+//Example 12.7
+//Deriving from Poiseuille's law and considering flow rate has halved [Q2=0.5Q1], we get
+//(r2/r1)^4=Q2/Q1
+//r2/r1=(0.5)^1/4;
+ratio=(0.5)^(1/4);
+printf('The radius of the coronary artery after plaque deposits is %0.3f times the initial radius,\na decrease of %0.2f%%',ratio,[(1-ratio)/1*100])
+//The answer varies due to round off error
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.8/Ex12_8.sce b/3845/CH12/EX12.8/Ex12_8.sce
new file mode 100644
index 000000000..f689b8fb4
--- /dev/null
+++ b/3845/CH12/EX12.8/Ex12_8.sce
@@ -0,0 +1,12 @@
+//Example 12.8
+Q=0.120;//Flow rate (cm^3/s)
+Q=Q*(10^-2)^3;//Flow rate (m^3/s)
+r=0.150*10^-3;//Radius of needle (m)
+l=2.50*10^-2;//Length of needle (m)
+eta=1*10^-3;//Viscosity of saline solution(N.s/m^2)
+P1=8;//Gauge pressure in vein (mm Hg)
+P1=P1*133/1.00;//Gauge pressure in vein (N/m^2)
+P2=[(8*eta*l*Q)/(%pi*r^4)]+P1;//Pressure required from Poiseuille's law (N/m^2)
+printf('Pressure required at the needle''s entrance = %0.2e N/m^2',P2)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH12/EX12.9/Ex12_9.sce b/3845/CH12/EX12.9/Ex12_9.sce
new file mode 100644
index 000000000..a317b18ed
--- /dev/null
+++ b/3845/CH12/EX12.9/Ex12_9.sce
@@ -0,0 +1,19 @@
+//Example 12.9
+Q=0.120;//Flow rate (cm^3/s)
+Q=Q*(10^-2)^3;//Flow rate (m^3/s)
+r=0.150*10^-3;//Radius of needle (m)
+eta=1*10^-3;//Viscosity of saline solution(N.s/m^2)
+//Above information from Exercise 12.8
+//////////////////////////////////////
+A=%pi*r^2;//Cross-sectional area of needle
+v=Q/A;//Fluid speed (m/s)
+rho=1025;//Density of saline solution (kg/m^3)
+N_R=(2*rho*v*r)/eta;//Reynolds number
+printf('Reynolds number = %0.1f (flow in tube)',N_R)
+if N_R<2000 disp('The flow is laminar')
+elseif N_R>=2000&N_R<=3000 disp('The flow is unstable')
+else disp('The flow is turbulent')
+end
+//Answer slightly varies with the textbook given answer
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest