summaryrefslogtreecommitdiff
path: root/3834/CH10
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3834/CH10
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3834/CH10')
-rw-r--r--3834/CH10/EX10.1.1/Ex10_1_1.jpgbin0 -> 188725 bytes
-rw-r--r--3834/CH10/EX10.1.1/Ex10_1_1.sce14
-rw-r--r--3834/CH10/EX10.1.2/Ex10_1_2.jpgbin0 -> 208025 bytes
-rw-r--r--3834/CH10/EX10.1.2/Ex10_1_2.sce15
-rw-r--r--3834/CH10/EX10.2.1/Ex10_2_1.jpgbin0 -> 207856 bytes
-rw-r--r--3834/CH10/EX10.2.1/Ex10_2_1.sce13
-rw-r--r--3834/CH10/EX10.2.2/Ex10_2_2.jpgbin0 -> 226701 bytes
-rw-r--r--3834/CH10/EX10.2.2/Ex10_2_2.sce39
-rw-r--r--3834/CH10/EX10.3.1/Ex10_3_1.jpgbin0 -> 188016 bytes
-rw-r--r--3834/CH10/EX10.3.1/Ex10_3_1.sce17
-rw-r--r--3834/CH10/EX10.3.2/Ex10_3_2.jpgbin0 -> 223664 bytes
-rw-r--r--3834/CH10/EX10.3.2/Ex10_3_2.sce29
-rw-r--r--3834/CH10/EX10.3.3/Ex10_3_3.jpgbin0 -> 207461 bytes
-rw-r--r--3834/CH10/EX10.3.3/Ex10_3_3.sce15
-rw-r--r--3834/CH10/EX10.4.1/Ex10_4_1.jpgbin0 -> 214767 bytes
-rw-r--r--3834/CH10/EX10.4.1/Ex10_4_1.sce23
16 files changed, 165 insertions, 0 deletions
diff --git a/3834/CH10/EX10.1.1/Ex10_1_1.jpg b/3834/CH10/EX10.1.1/Ex10_1_1.jpg
new file mode 100644
index 000000000..98036dc28
--- /dev/null
+++ b/3834/CH10/EX10.1.1/Ex10_1_1.jpg
Binary files differ
diff --git a/3834/CH10/EX10.1.1/Ex10_1_1.sce b/3834/CH10/EX10.1.1/Ex10_1_1.sce
new file mode 100644
index 000000000..effdfae0b
--- /dev/null
+++ b/3834/CH10/EX10.1.1/Ex10_1_1.sce
@@ -0,0 +1,14 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.1.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+E=0.712;//the energy gap E=Ec-Ef in eV
+KBT=0.025;//Boltzman constant temperature product in eV
+e=1.6E-19;//Electrons value in Coulomb
+Y=E/KBT;
+fE= exp(-Y);//Probability of excited electrons at conduction band at room tenmperature
+
+mprintf("The probability of excited electrons at conduction band at room tenmperature = %.2f *1e-13 ",fE*1e13);//multiplication by 1e13 to change the unit to 1e-13
diff --git a/3834/CH10/EX10.1.2/Ex10_1_2.jpg b/3834/CH10/EX10.1.2/Ex10_1_2.jpg
new file mode 100644
index 000000000..ec79ee9a4
--- /dev/null
+++ b/3834/CH10/EX10.1.2/Ex10_1_2.jpg
Binary files differ
diff --git a/3834/CH10/EX10.1.2/Ex10_1_2.sce b/3834/CH10/EX10.1.2/Ex10_1_2.sce
new file mode 100644
index 000000000..ed17adb6e
--- /dev/null
+++ b/3834/CH10/EX10.1.2/Ex10_1_2.sce
@@ -0,0 +1,15 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.1.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+T=300;//temperature in K
+kB=1.38E-23;//Boltzman constant in J/K
+E=kB*T;
+e=1.6E-19;//Electrons value in Coulomb
+Vd=0.7;;//depletion voltage in V
+Y=e*Vd/E;
+nnbynp=exp(Y);//Ratio of majority to minority charge carriers in an n type and a p type of silicon semiconductor
+mprintf("Ratio of majority to minority charge carriers in an n type and a p type of silicon semiconductor = %.2f x10^11",nnbynp/1e11);//the answer vary due to rounding
diff --git a/3834/CH10/EX10.2.1/Ex10_2_1.jpg b/3834/CH10/EX10.2.1/Ex10_2_1.jpg
new file mode 100644
index 000000000..e94481e5a
--- /dev/null
+++ b/3834/CH10/EX10.2.1/Ex10_2_1.jpg
Binary files differ
diff --git a/3834/CH10/EX10.2.1/Ex10_2_1.sce b/3834/CH10/EX10.2.1/Ex10_2_1.sce
new file mode 100644
index 000000000..c825a9574
--- /dev/null
+++ b/3834/CH10/EX10.2.1/Ex10_2_1.sce
@@ -0,0 +1,13 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.2.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+lambda=1300;//Operating wavelength in nm
+ETAext=0.1;//External Quantum Efficiency
+e=1.6E-19;//Electrons value in Coulomb
+Ep=0.0153E-17;//photon's energy in J
+SlopeE=(Ep/e)*ETAext;//Slope Efficiency
+mprintf("Slope Efficiency = %.3f",SlopeE);
diff --git a/3834/CH10/EX10.2.2/Ex10_2_2.jpg b/3834/CH10/EX10.2.2/Ex10_2_2.jpg
new file mode 100644
index 000000000..3dc74f174
--- /dev/null
+++ b/3834/CH10/EX10.2.2/Ex10_2_2.jpg
Binary files differ
diff --git a/3834/CH10/EX10.2.2/Ex10_2_2.sce b/3834/CH10/EX10.2.2/Ex10_2_2.sce
new file mode 100644
index 000000000..9fd31f92c
--- /dev/null
+++ b/3834/CH10/EX10.2.2/Ex10_2_2.sce
@@ -0,0 +1,39 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.2.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+//case 1
+lambda=840;//Operating wavelength in nm
+Eg=1248/lambda;//semiconductor bandgap in eV
+e=1.6E-19;//Electrons value in Coulomb
+V=Eg;//voltage in V
+R=1;//Reflectivity
+I=10E-3;//Current in A
+P1=I*I*R;
+P2=I*V;
+P3=P1+P2;
+Pout=1.25E-3;//Output power in W
+ETAp=Pout/P3;
+mprintf("Power Efficiency of a VCSEL diode = %.3f", ETAp);
+ETAP=ETAp*100;
+mprintf("\n Hence, Power Efficiency of a VCSEL diode = %.1f Percent ",ETAP);
+
+//case 2
+lambda2=1300;//Operating wavelength in nm
+Eg2=1248/lambda2;//semiconductor bandgap in eV
+e2=1.6E-19;//Electrons value in Coulomb
+V2=Eg2;//voltage in V
+R2=1.84;//Reflectivity
+I2=312E-3;//Current in A
+P11=I2*I2*R;
+P22=I2*V2;
+P33=P11+P22;
+Pout1=1E-3;//Output power in W
+ETAp1=Pout1/P33;
+mprintf("\nPower Efficiency of a broad area laser diode = %.3f", ETAp1);
+ETAP1=ETAp1*100;
+mprintf("\n Hence, Power Efficiency of a broad area laser diode = %.1f Percent ",ETAP1);//the answer vary due to rounding
diff --git a/3834/CH10/EX10.3.1/Ex10_3_1.jpg b/3834/CH10/EX10.3.1/Ex10_3_1.jpg
new file mode 100644
index 000000000..f45739d1c
--- /dev/null
+++ b/3834/CH10/EX10.3.1/Ex10_3_1.jpg
Binary files differ
diff --git a/3834/CH10/EX10.3.1/Ex10_3_1.sce b/3834/CH10/EX10.3.1/Ex10_3_1.sce
new file mode 100644
index 000000000..c5079c3e4
--- /dev/null
+++ b/3834/CH10/EX10.3.1/Ex10_3_1.sce
@@ -0,0 +1,17 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.3.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+Ith1=40//threshold current in mA at 25 degree centigrade
+Ith2=66//threshold current in mA at 25 degree centigrade
+T1=25;//temperature in degree centigrade for calculation of threshold current
+T2=65//temperature in degree centigrade for calculation of threshold current
+delta=2.5//threshold current change with temperature in percent per degree centigrade
+Io=Ith1/(1+(delta/100)*T1);//characteristic current in mA at 0
+x=log(Ith1/Io)//constant
+To=T1/x//characteristic temperature degree centigrade
+mprintf("Io =%0.0f mA ",Io)
+mprintf("\nTo =%0.0f degree Centigrade",To)//answer vary due to rounding
diff --git a/3834/CH10/EX10.3.2/Ex10_3_2.jpg b/3834/CH10/EX10.3.2/Ex10_3_2.jpg
new file mode 100644
index 000000000..5c3eca2fa
--- /dev/null
+++ b/3834/CH10/EX10.3.2/Ex10_3_2.jpg
Binary files differ
diff --git a/3834/CH10/EX10.3.2/Ex10_3_2.sce b/3834/CH10/EX10.3.2/Ex10_3_2.sce
new file mode 100644
index 000000000..3b611b7fb
--- /dev/null
+++ b/3834/CH10/EX10.3.2/Ex10_3_2.sce
@@ -0,0 +1,29 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.3.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+tau=2E-9;//Carrier recombination lifetime in s
+Ith=90E-3;//threshold current in A
+Ip=40E-3;//amplitude of modulation current in A
+//case 1
+Ib=80E-3;//Assumed bias current in A
+Td=tau*log(Ip/(Ip+Ib-Ith));
+
+mprintf("The delay time for broad-area laser diode with Ib %.2f mA= %.2f ns",Ib*1e3,Td*1E+9);
+//case 2
+Ib=70E-3;//Assumed bias current in A
+Td=tau*log(Ip/(Ip+Ib-Ith));
+
+mprintf("\nThe delay time for broad-area laser diode with Ib %.2f mA= %.2f ns",Ib*1e3,Td*1E+9);
+//case 3
+Ib=90E-3;//Assumed bias current in A
+Td=abs(tau*log(Ip/(Ip+Ib-Ith)));
+
+mprintf("\nThe delay time for broad-area laser diode with Ib %.2f mA= %.2f ns",Ib*1e3,Td*1E+9);
+//multiplication by 1e3 to convert unit to mA from A and multiplication by 1e9 to convert unit from s to ns
+
+//the answers vary due to rounding
diff --git a/3834/CH10/EX10.3.3/Ex10_3_3.jpg b/3834/CH10/EX10.3.3/Ex10_3_3.jpg
new file mode 100644
index 000000000..1ab1b8345
--- /dev/null
+++ b/3834/CH10/EX10.3.3/Ex10_3_3.jpg
Binary files differ
diff --git a/3834/CH10/EX10.3.3/Ex10_3_3.sce b/3834/CH10/EX10.3.3/Ex10_3_3.sce
new file mode 100644
index 000000000..7ad3524c8
--- /dev/null
+++ b/3834/CH10/EX10.3.3/Ex10_3_3.sce
@@ -0,0 +1,15 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.3.3
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+RIN=1E-16;//relative intensity in 1/Hz
+P=100E-6;//power received in W
+BW=100E+6;//Receiver bandwidth in Hz
+
+PN=sqrt(RIN*(P^2)*BW);//The average noise power detected by receiver W
+
+mprintf("The average noise power detected by receiver = %.2f uW",PN*1E+6);
+//multiplication by 1e6 to convert unit to W from uW
diff --git a/3834/CH10/EX10.4.1/Ex10_4_1.jpg b/3834/CH10/EX10.4.1/Ex10_4_1.jpg
new file mode 100644
index 000000000..1baee8161
--- /dev/null
+++ b/3834/CH10/EX10.4.1/Ex10_4_1.jpg
Binary files differ
diff --git a/3834/CH10/EX10.4.1/Ex10_4_1.sce b/3834/CH10/EX10.4.1/Ex10_4_1.sce
new file mode 100644
index 000000000..2b2f44718
--- /dev/null
+++ b/3834/CH10/EX10.4.1/Ex10_4_1.sce
@@ -0,0 +1,23 @@
+//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.4.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+//case 1
+R=0.035;//Reflectivity for the air-silica interface
+NAt=0.275;//Typical Numerical Aperture in a GI multimode fiber
+D=1;//Ratio of the diameter of the fiber core to the diameter of the source
+X=2*(D^2);
+Y=1-1/X;
+ETAcgi=(NAt^2)*Y;//The amount of light coupling in a GI multimode fiber
+
+mprintf("The amount of light coupling in a GI multimode fiber is = %.3f",ETAcgi);
+
+//case 2
+NAt2=0.13;//Typical Numerical Aperture in a SI singlemode fiber
+EATcsi=NAt2^2;//The amount of light coupling in a SI singlemode fiber
+mprintf("\nThe amount of light coupling in a SI singlemode fiber is = %.3f",EATcsi);
+//the answers vary due to rounding