diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3831/CH9 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3831/CH9')
-rw-r--r-- | 3831/CH9/EX9.1/Ex9_1.sce | 18 | ||||
-rw-r--r-- | 3831/CH9/EX9.10/Ex9_10.sce | 18 | ||||
-rw-r--r-- | 3831/CH9/EX9.11/Ex9_11.sce | 11 | ||||
-rw-r--r-- | 3831/CH9/EX9.2/Ex9_2.sce | 23 | ||||
-rw-r--r-- | 3831/CH9/EX9.3/Ex9_3.sce | 18 | ||||
-rw-r--r-- | 3831/CH9/EX9.4/Ex9_4.sce | 41 | ||||
-rw-r--r-- | 3831/CH9/EX9.5/Ex9_5.sce | 23 | ||||
-rw-r--r-- | 3831/CH9/EX9.6/Ex9_6.sce | 26 | ||||
-rw-r--r-- | 3831/CH9/EX9.7/Ex9_7.sce | 17 | ||||
-rw-r--r-- | 3831/CH9/EX9.8/Ex9_8.sce | 21 | ||||
-rw-r--r-- | 3831/CH9/EX9.9/Ex9_9.sce | 36 | ||||
-rw-r--r-- | 3831/CH9/EX9.9/Figure9_20.pdf | bin | 0 -> 18895 bytes |
12 files changed, 252 insertions, 0 deletions
diff --git a/3831/CH9/EX9.1/Ex9_1.sce b/3831/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..d1e1a8c6d --- /dev/null +++ b/3831/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,18 @@ +// Example 9_1
+clc;funcprot(0);
+// Given data
+T_1=15+273.15;// K
+T_2=50+273.15;// K
+Q=0.100;// The electrical energy in W
+c=4.186;// kJ/kg.K
+T_b=20+273.15;// K
+
+// Calculation
+m=Q/(c*(T_2-T_1));// The expected water flow rate in kg/s
+// Assume ds=s_out-s_in
+ds=c*log(T_2/T_1);// kJ/kg.K
+S_p=(m*ds)-(Q/T_b);// kJ/s.K
+printf("\nThe entropy production rate,S_p=%1.2e kJ/s.K ",S_p);
+if(S_p<0)
+ printf("\nSince the entropy production rate is negative, this water heater cannot possibly meet the claims of the inventor, so we should reject the patent application.")
+ end
diff --git a/3831/CH9/EX9.10/Ex9_10.sce b/3831/CH9/EX9.10/Ex9_10.sce new file mode 100644 index 000000000..c81a6d189 --- /dev/null +++ b/3831/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,18 @@ +// Example 9_10
+clc;funcprot(0);
+// Given data
+m=500;// lbm/s
+T=50.0;// °F
+y_1=1.00;// The inlet height in ft
+y_2=1.80;// The exit height in ft
+v_1=8.00;// The inlet velocity ft/s
+v_2=5.14;// The exit velocity in ft/s
+g=32.174;// ft/s^2
+g_c=32.174;// lbm.ft/(lbf.s^2)
+c=1.00; // Btu/(lbm.R)
+
+// Solution
+h_L12=(y_2-y_1)^3/(4*y_1*y_2);// ft
+E_dr=(m*(g/g_c)*h_L12)/778.17;// The energy dissipation rate in Btu/s
+S_p=m*c*log(1+(g*[(h_L12)]/(c*g_c*(T+459.67))));// The entropy production rate in Btu/(s.R)
+printf('\nThe energy dissipation rate=%0.4f Btu/s \nThe entropy production rate,S_p=%0.4f Btu/(s.R)',E_dr,S_p);
diff --git a/3831/CH9/EX9.11/Ex9_11.sce b/3831/CH9/EX9.11/Ex9_11.sce new file mode 100644 index 000000000..86c027d95 --- /dev/null +++ b/3831/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,11 @@ +// Example 9_11
+clc;funcprot(0);
+// Given data
+mu=10.1*10^-3;// The viscosity of the water in kg/(m.s)
+L=10.0;// The length of the pipe in m
+V_m=0.500;// The maximum velocity of the fluid in m/s
+T=20.0;// °C
+
+// Solution
+S_pW=(2*%pi*mu*L*V_m^2)/(T+273.15);// The entropy production rate in W/K
+printf('\nThe entropy production rate,(S_p)_W=%1.3e W/K',S_pW);
diff --git a/3831/CH9/EX9.2/Ex9_2.sce b/3831/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..4b97626b2 --- /dev/null +++ b/3831/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,23 @@ +// Example 9_2
+clc;funcprot(0);
+// Given data
+m=0.2000;// lbm/s
+// Station 1
+p_1=14.7;// psia
+T_1=50.00;// °F
+// Station 2
+p_2=95.00;// psia
+D_1=1.000;// The inlet diameter of the nozzle in m
+D_2=0.2500;// The outlet diameter of the nozzle in m
+c=1.0;// Btu/lbm.R
+g_c=32.174;// lbm.ft/(lbf.s^2)
+
+// Calculation
+v_f=0.01602;// ft^3/lbm
+v=v_f;// ft^3/lbm
+V_1=(4*m*v*144)/(%pi*D_1^2);// ft/s
+V_2=V_1*(D_1/D_2)^2;// ft/s
+T_2=(T_1+459.67)+(v*(((p_2-p_1)*144)/(c*778.17)))-((V_2^2-V_1^2)/(2*c*g_c*778.17));// R
+S_p=m*c*log(T_2/(T_1+459.7));// Btu/(s.R)
+S_p=S_p*778.17;// ft.lbf/(s.R)
+printf("\nThe rate of entropy production,S_p=%0.4f ft.lbf/(s.R)",S_p);
diff --git a/3831/CH9/EX9.3/Ex9_3.sce b/3831/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..36301b55d --- /dev/null +++ b/3831/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,18 @@ +// Example 9_3
+clc;funcprot(0);
+// Given data
+m=0.800;// kg/s
+V_1=93.0;// m/s
+// Station 1
+p_1=97.0;// kPa
+T_1=80.0;// °C
+// Station 2
+p_2=101.3;// kPa
+g_c=1;// The gravitational constant
+c_p=523;// J/(kg.K)
+R=208;// J/(kg.K)
+
+// Calculation
+T_2=(T_1+273.15)+((V_1^2)/(2*g_c*c_p));// K
+S_p=m*((c_p*log(T_2/(T_1+273.15)))-(R*log(p_2/p_1)));// The rate of entropy production within the diffuser in W/K
+printf("\nThe rate of entropy production within the diffuser,S_p=%1.2f W/K",S_p);
diff --git a/3831/CH9/EX9.4/Ex9_4.sce b/3831/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..f26f376cd --- /dev/null +++ b/3831/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,41 @@ +// Example 9_4
+clc;funcprot(0);
+// Given data
+m=0.100;// lbm/s
+// Station 1
+x_1=0.00;// The quality of steam at inlet
+T_1=100;// °F
+// Station 2
+x_2=0.530;// The quality of steam at exit
+T_2=20;// °F
+T_b=60.0;// °F
+
+// Calculation
+// (a)
+// From Table C.7a for R-134a, we find
+h_f1=44.23;// Btu/lbm
+h_1=h_f1;// Btu/lbm
+s_f1=0.0898;// Btu/(lbm.R)
+s_1=s_f1;// Btu/(lbm.R)
+h_f2=17.74;// Btu/lbm
+h_fg2=86.87;// Btu/lbm
+s_f2=0.0393;// Btu/(lbm.R)
+s_fg2=0.2206-s_f2;// Btu/(lbm.R)
+h_2=h_f2+(x_2*h_fg2);// Btu/lbm
+s_2=s_f2+(x_2*s_fg2);// Btu/(lbm.R)
+Q=m*(h_2-h_1);// Btu/s
+S_pa=((m*(s_2-s_1))-(Q/(T_b+459.67)));// The entropy production rate inside the valve in Btu/(s.R)
+S_p=S_pa*778.17;// ft.lbf/(s.R)
+printf("\n(a)The entropy production rate inside the valve if the valve is not insulated and has an isothermal external surface temperature of 60.0°F,S_p=%0.4f ft.lbf/(s.R)",S_p);
+// (b)
+h_2=h_1;// Btu/lbm
+x_2=(h_2-h_f2)/h_fg2;// The quality of steam
+x_2p=x_2*100;// % (in x_2p,p refers the quality of steam in percentage)
+s_2=s_f2+(x_2*s_fg2);// Btu/(lbm.R)
+Q=0;// W
+S_pb=m*(s_2-s_1)-(Q/T_b);// Btu/(s.R)
+S_p=S_pb*778.17;// lbf/(s.R)
+printf("\n(b)The entropy production rate inside the valve if it is insulated and assuming it has the same inlet conditions and exit temperature,S_p=%0.3f ft.lbf/(s.R)",S_p);
+//(c)
+S_p_pd=((S_pa-S_pb)/S_pa)*100;// The percentage decrease in S_p brought about by adding the insulation in %
+printf("\n(c)The percentage decrease in S_p brought about by adding the insulation is %2.1f percentage.",S_p_pd);
diff --git a/3831/CH9/EX9.5/Ex9_5.sce b/3831/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..feb1c574c --- /dev/null +++ b/3831/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,23 @@ +// Example 9_5
+clc;funcprot(0);
+// Given data
+m_a=0.200;// kg/s
+T_ain=90.0;// °C
+T_aout=75.0;// °C
+T_win=20.0;// °C
+T_wout=40.0;// °C
+U=140;// W/(m^2.K)
+c_pa=1.004;// The specific heat of air in kJ/kg.K
+c_pw=4.186;// The specific heat of water in kJ/kg.K
+
+// Calculation
+// (a) Parallel flow
+delT_LMTDa=((T_aout-T_wout)-(T_ain-T_win))/(log((T_aout-T_wout)/(T_ain-T_win)));// K
+//(b) Counter flow
+delT_LMTDb=((T_aout-T_win)-(T_ain-T_wout))/(log((T_aout-T_win)/(T_ain-T_wout)));// K
+Q=abs(m_a*c_pa*10^3*(T_aout-T_ain));// J/s
+A_pf=Q/(U*delT_LMTDa);// m^2
+A_cf=Q/(U*delT_LMTDb);// m^2
+m_w=m_a*(c_pa/c_pw)*((T_ain-T_aout)/(T_wout-T_win));// kg/s
+S_p=(m_a*c_pa*10^3*log((T_aout+273.15)/(T_ain+273.15)))+(m_w*c_pw*10^3*log((T_wout+273.15)/(T_win+273.15)));// W/K
+printf("\nThe corresponding heat exchanger area for parallel flow,A_parallel flow=%0.3f m^2 \nThe corresponding heat exchanger area for counter flow,A_counter flow=%0.3f m^2 \nThe entropy production rate,S_p=%1.2f W/K",A_pf,A_cf,S_p);
diff --git a/3831/CH9/EX9.6/Ex9_6.sce b/3831/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..166f942d5 --- /dev/null +++ b/3831/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,26 @@ +// Example 9_6
+clc;funcprot(0);
+// Given data
+m_H=0.300;// lbm/s
+T_H=140.0;// °F
+m_C=0.300;// lbm/s
+T_C=50.0;// °F
+c=1.00;// Btu/(lbm.R)
+
+// Calculation
+// (a)
+m_M=m_H+m_C;// lbm/s
+gamma=m_H/m_M;// The mass flow rate ratio
+T_1=T_H;// °F
+T_2=T_C;// °F
+T_1byT_2=(T_H+459.67)/(T_C+459.67);// The temperature ratio
+T_3=T_C+(gamma*(T_H-T_C));// °F
+m_3=m_M;// lbm/s
+S_p_mixing=m_3*c*log((1+(gamma*(T_1byT_2-1)))*(T_1byT_2)^(-gamma));// Btu/(s.R)
+S_p_mixing=S_p_mixing*778.17;// ft.lbf/(s.R)
+printf("\n(a)The shower mixture temperature,T_3=%2.0f°F \n The entropy production rate,(S_p)_mixing=%1.2f lbf/(s.R)",T_3,S_p_mixing);
+// (b)
+gamma_c=((1-T_1byT_2)+log(T_1byT_2))/((1-T_1byT_2)*log(T_1byT_2));// The critical mass fraction
+S_p_mixing=m_3*c*log((1+(gamma_c*(T_1byT_2-1)))*(T_1byT_2)^(-gamma_c));// // Btu/(s.R)
+S_p_mixing=S_p_mixing*778.17;// ft.lbf/(s.R)
+printf("\n(b)The critical mass fraction,gamma_c=%0.3f \n The value of the maximum entropy production rate,(S_p)_mixing=%1.2f ft.lbf/(s.R)",gamma_c,S_p_mixing);
diff --git a/3831/CH9/EX9.7/Ex9_7.sce b/3831/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..91cfa862f --- /dev/null +++ b/3831/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,17 @@ +// Example 9_7
+clc;funcprot(0);
+// Given data
+mdot=0.500;// kg/s
+p_1=8.00;// MPa
+T_1=300;// °C
+T_2=100;// °C
+x_2=1.00;// The quality of steam at station 2
+T_b=20.0;// °C
+h_1=2785.0;// kJ/kg
+h_2=2676.0;// kJ/kg
+s_1=5.7914;// kJ/kg.K
+s_2=7.3557;// kJ/kg.K
+
+// Calculation
+W_max=mdot*[(h_1-((T_b+273.15)*s_1))-(h_2-((T_b+273.15)*s_2))];// kW
+printf("\nThe maximum (reversible) power,W_max=%3.0f kW",W_max);
diff --git a/3831/CH9/EX9.8/Ex9_8.sce b/3831/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..61c745009 --- /dev/null +++ b/3831/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,21 @@ +// Example 9_8
+clc;funcprot(0);
+// Given data
+V_2=3.00;// ft^3
+T_in=70+459.67;// °F
+p_2=2000;// psia
+
+// Calculation
+// From Table C.13a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find for oxygen
+c_p=0.219;// Btu/(lbm.R)
+R=48.29;// ft.lbf/(lbm.R)
+k=1.39;// The specific heat ratio
+T_2_af=k*T_in;// R
+T_2_if=T_in;// R
+m_2_af=(p_2*144*V_2)/(R*T_2_af);// lbm
+m_2_if=(p_2*144*V_2)/(R*T_2_if);// lbm
+// (a)
+S_p_12_af=m_2_af*c_p*2.303*log10(k);// Btu/R
+// (b)
+S_p_12_if=m_2_if*R/778.16;// Btu/R
+printf("\n(a)The amount of entropy produced when the container is filled adiabatically by insulating it,[1(S_P)2]adiabatic filling=%1.2f Btu/R \n(b)The amount of entropy produced when the container is filled isothermally,[1(S_P)2]isothermal filling=%1.2f Btu/R",S_p_12_af,S_p_12_if)
diff --git a/3831/CH9/EX9.9/Ex9_9.sce b/3831/CH9/EX9.9/Ex9_9.sce new file mode 100644 index 000000000..37c9f8bdb --- /dev/null +++ b/3831/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,36 @@ +// Example 9_9
+clc;funcprot(0);
+// Given data
+gamma=0.500;// The specific heat ratio for air
+T_in=70.0;// °F
+p_in_psig=[0.000,20.00,40.00,60.00,80.00,100.00,120.00,140.00];// psig
+p_in=[14.7,34.7,54.7,74.7,94.7,114.7,134.7,154.7];// psia
+T_hot=[70.0,119.0,141.0,150.0,156.0,161.0,164.0,166.0];// °F
+T_cold=[70.0,19.5,-3.00,-14.0,-22.0,-29.0,-34.0,-39.0];// °F
+T_r=[1.000,1.209,1.315,1.368,1.406,1.441,1.465,1.487];// Note:T_r=(T_hot+460)/(T_cold+460)
+p_e=14.7;// The exit pressure in psia
+R=0.0685;// Btu/(lbm.R)
+c_p=0.240;// Btu/(lbm.R)
+
+// Calculation
+Sdot_pbymdot_3_1=((c_p*log(((T_r(1)^gamma)/(1+(gamma*(T_r(1)-1))))))+(R*log(p_in(1)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3_2=((c_p*log(((T_r(2)^gamma)/(1+(gamma*(T_r(2)-1))))))+(R*log(p_in(2)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3_3=((c_p*log(((T_r(3)^gamma)/(1+(gamma*(T_r(3)-1))))))+(R*log(p_in(3)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3_4=((c_p*log(((T_r(4)^gamma)/(1+(gamma*(T_r(4)-1))))))+(R*log(p_in(4)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3_5=((c_p*log(((T_r(5)^gamma)/(1+(gamma*(T_r(5)-1))))))+(R*log(p_in(5)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3_6=((c_p*log(((T_r(6)^gamma)/(1+(gamma*(T_r(6)-1))))))+(R*log(p_in(6)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3_7=((c_p*log(((T_r(7)^gamma)/(1+(gamma*(T_r(7)-1))))))+(R*log(p_in(7)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3_8=((c_p*log(((T_r(8)^gamma)/(1+(gamma*(T_r(8)-1))))))+(R*log(p_in(8)/p_e)));// Btu/(lbm.R)
+Sdot_pbymdot_3=[Sdot_pbymdot_3_1,Sdot_pbymdot_3_2,Sdot_pbymdot_3_3,Sdot_pbymdot_3_4,Sdot_pbymdot_3_5,Sdot_pbymdot_3_6,Sdot_pbymdot_3_7,Sdot_pbymdot_3_8];// Btu/(lbm.R)
+plot(p_in_psig,Sdot_pbymdot_3);
+xlabel('Inlet pressure(psig)');
+ylabel('Sdot_p/mdot_3(Btu/lbm.R)');
+xtitle('Sdot_p/mdot_3 vs. inlet pressure for a vortex tube');
+disp('Remaining Results for Example 9.9');
+disp('The entropy production rate per unit mass flow rate for each pressure shown');
+disp('Inlet pressure psig');
+disp(p_in_psig);
+disp('T_1/T_2');
+disp(T_r);
+disp('Sdot_P/mdot_3 Btu/(lbm⋅R)');
+disp(Sdot_pbymdot_3);
diff --git a/3831/CH9/EX9.9/Figure9_20.pdf b/3831/CH9/EX9.9/Figure9_20.pdf Binary files differnew file mode 100644 index 000000000..ad20ac117 --- /dev/null +++ b/3831/CH9/EX9.9/Figure9_20.pdf |