diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3831/CH6 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3831/CH6')
-rw-r--r-- | 3831/CH6/EX6.1/Ex6_1.sce | 22 | ||||
-rw-r--r-- | 3831/CH6/EX6.10/Ex6_10.sce | 15 | ||||
-rw-r--r-- | 3831/CH6/EX6.2/Ex6_2.sce | 18 | ||||
-rw-r--r-- | 3831/CH6/EX6.3/Ex6_3.sce | 18 | ||||
-rw-r--r-- | 3831/CH6/EX6.4/Ex6_4.sce | 17 | ||||
-rw-r--r-- | 3831/CH6/EX6.5/Ex6_5.sce | 16 | ||||
-rw-r--r-- | 3831/CH6/EX6.6/Ex6_6.sce | 17 | ||||
-rw-r--r-- | 3831/CH6/EX6.7/Ex6_7.sce | 12 | ||||
-rw-r--r-- | 3831/CH6/EX6.8/Ex6_8.sce | 11 | ||||
-rw-r--r-- | 3831/CH6/EX6.9/Ex6_9.sce | 11 |
10 files changed, 157 insertions, 0 deletions
diff --git a/3831/CH6/EX6.1/Ex6_1.sce b/3831/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..b8fa4fa12 --- /dev/null +++ b/3831/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,22 @@ +// Example 6_1
+clc;funcprot(0);
+// Given data
+V=300;// ft/s
+D=6/12;// ft
+R=D/2;// ft
+Z=15;// ft
+g=32.174;// ft/s^2
+g_c=32.174;// lbm.ft/lbf.s^2
+
+// Calculation
+// From the superheated steam table, Table C.3a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that, at 100. psia and 500.°F,
+v=5.587;// ft^3/lbm
+h=1279.1;// Btu/lbm
+A=%pi*(3/12)^2;// ft^2
+mdot=(A*V)/v;// lbm/s
+ke=(V^2)/(2*g_c);// ft.lbf/lbm
+ke=ke*(1/778.16);// Btu/lbm
+pe=(g*Z)/g_c;// // ft.lbf/lbm
+pe=pe*(1/778.16);// Btu/lbm
+E_mf=-[mdot*(h+ke+pe)];// Btu/s
+printf("\nThe mass flow energy transport rate of steam,E_mass flow=%1.2e Btu/s",E_mf);
diff --git a/3831/CH6/EX6.10/Ex6_10.sce b/3831/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..7831668a3 --- /dev/null +++ b/3831/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,15 @@ +// Example 6_10
+clc;funcprot(0);
+// Given data
+p_1=2000;// psig
+T_1=200+459.67;// R
+T_T=70.0+459.67;// R
+m_R=0.500;// lbm/s
+W_c=-3.00;// hp
+k=1.4;// The specific heat ratio of nitrogen
+
+// Calculation
+m_Rbym_D=(k-1)/[(k*(T_1/T_T))-1];// The ratio of recycled mass flow rate to discharge mass flow rate
+c_p=0.248;// Btu/(lbm.R)
+Q_H=(m_R*c_p*(T_1-T_T))+[(W_c)*550*(1/778)];// Btu/s
+printf("\nThe rate of recycle heat transfer required,Q_H=%2.1f Btu/s",Q_H);
diff --git a/3831/CH6/EX6.2/Ex6_2.sce b/3831/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..8fecb1a65 --- /dev/null +++ b/3831/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,18 @@ +// Example 6_2
+clc;funcprot(0);
+// Given data
+D=1.00;// inch
+T=60.0;// °F
+p=80.0;// psig
+mdot=0.800;// lbm/s
+v=0.01603;// ft^3/lbm
+g_c=32.174;// lbm.ft/lbf.s^2
+g=32.174;// ft/s^2
+
+// Calculation
+V_in=(4*mdot*v)/(%pi*D^2*(1/12)^2);// ft/s
+p_in=94.7;// psia
+p_out=14.7;// psia
+V_out=[(V_in^2)+(2*g_c*v*(p_in-p_out)*144)]^(1/2);// ft/s
+Z_out=V_out^2/(2*g);// ft
+printf("\n(a)The outlet velocity from the nozzle,(V_out)_a=%3.0f ft/s \n(b)The height to which the stream of water rises above the nozzle outlet when the nozzle is pointed straight up,(Z_out)_b=%3.0f ft.",V_out,Z_out)
diff --git a/3831/CH6/EX6.3/Ex6_3.sce b/3831/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..b0ddc7201 --- /dev/null +++ b/3831/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,18 @@ +// Example 6_3
+clc;funcprot(0);
+// Given data
+p_1=2.00;// MPa
+p_2=0.100;// MPa
+T_2=150;// °C
+h_1=2776.4;// kJ/kg
+h_2=2776.4;// kJ/kg
+
+// Calculation
+h_f1=908.8;// kJ/kg
+h_fg1=1890.7;// kJ/kg
+h_g1=2799.5;// kJ/kg
+x_1=(h_1-h_f1)/h_fg1;// The quality of steam
+x_1=x_1*100;// The quality of steam in %
+T_1=212.4;// °C
+mu_J=(T_1-T_2)/(p_1-p_2);// °C/MPa
+printf("\nThe quality of the wet steam in the pipe,x=%2.1f percentage \nJoule-Thomson coefficient,mu_J=%2.1f°C/MPa",x_1,mu_J);
diff --git a/3831/CH6/EX6.4/Ex6_4.sce b/3831/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..3686f743a --- /dev/null +++ b/3831/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,17 @@ +// Example 6_4
+clc;funcprot(0);
+// Given data
+Q=0;// kW
+W=0;// kW
+m_s=12.0;// kg/min
+p_1=1.00;// MPa
+T_1=500;// °C
+T_3=15;// °C
+T_4=20;// °C
+
+// Calculation
+h_1=3478.4;// kJ/kg
+h_2=762.8;// kJ/kg
+c_w=4.2;// kJ/kg.K
+m_w=m_s*(h_1-h_2)/[c_w*(T_4-T_3)];// kg/min
+printf("\nThe flow rate of cooling water taken from a local river,m_w=%4.0f kg/min",m_w);
diff --git a/3831/CH6/EX6.5/Ex6_5.sce b/3831/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..0e152bf5d --- /dev/null +++ b/3831/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,16 @@ +// Example 6_5
+clc;funcprot(0);
+// Given data
+p_1=85.0;// psig
+p_2=10.0;// psig
+t=8.00;// hour
+m=20.0;// gal
+
+// Calculation
+mv=20.0/8.00;// gal/h
+mv=mv*0.13368*(1/3600);// ft^3/s
+W_shaft=mv*(p_1-p_2)*144;// ft.lbf/s
+W_shaft=W_shaft*(1/550);// hp
+W_shaft=W_shaft*746;// W
+W_shaft_ins=W_shaft*5*60*(1/2.50);// W
+printf("\nThe hydraulic power produced,(W_shaft)_instantaneous=%3.0f W",W_shaft_ins);
diff --git a/3831/CH6/EX6.6/Ex6_6.sce b/3831/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..f546890e8 --- /dev/null +++ b/3831/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,17 @@ +// Example 6_6
+clc;funcprot(0);
+// Given data
+p_1=2.00;// MPa
+T_1=800;// °C
+p_2=1.00;// MPa
+Wbymdot=2000;// kJ/kg
+
+// Calculation
+h_1=4150.4;// kJ/kg
+h_f2=29.30;// kJ/kg
+h_fg2=2484.9;// kJ/kg
+h_g2=2514.2;// kJ/kg
+h_2=h_1-Wbymdot;// kJ/kg
+x_2=(h_2-h_f2)/h_fg2;// The quality of steam
+x_2=x_2*100;// % vapor at the turbine’s outlet
+printf("\nThe quality of the steam at the outlet of an insulated steam turbine,x_2=%2.1f percentage.",x_2);
diff --git a/3831/CH6/EX6.7/Ex6_7.sce b/3831/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..78e861d2b --- /dev/null +++ b/3831/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,12 @@ +// Example 6_7
+clc;funcprot(0);
+// Given data
+T_in=20.0;// °C
+p_in=50.0;// MPa
+c=4.126;// kN.m/kg.K
+
+// Calculation
+v_f=0.001002;// m^3/kg
+v=0.0009804;// m^3/kg
+T_finalfilled=T_in+((v*(p_in*10^3))/c);// °C
+printf("\nThe final temperature of the water in the tank,T_final filled=%2.1f°C",T_finalfilled);
diff --git a/3831/CH6/EX6.8/Ex6_8.sce b/3831/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..7118053eb --- /dev/null +++ b/3831/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,11 @@ +// Example 6_8
+clc;funcprot(0);
+// Given data
+T_in=20.0;// °C
+p_in=1.40;// MPa
+k=1.40;// The specific heat ratio
+
+// Calculation
+T_finalfilling=k*(T_in+273.15);// K
+T_finalfilling=T_finalfilling-273.15;// °C
+printf("\nThe final temperature of the air in the tank,T_final filling=%3.0f°C",T_finalfilling);
diff --git a/3831/CH6/EX6.9/Ex6_9.sce b/3831/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..721e20bdb --- /dev/null +++ b/3831/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,11 @@ +// Example 6_9
+clc;funcprot(0);
+// Given data
+// From Example 6_8
+T_initial=137+273.15;// K
+k=1.4;// The specific heat ratio
+
+// Calculation
+T_finalemptying=T_initial*((2/k)-1);// K
+T_finalemptying=T_finalemptying-273.15;// °C
+printf("\nThe final temperature inside the tank immediately after the tank is empty,T_final emptying=%2.1f°C.",T_finalemptying);
|