diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3831/CH14/EX14.6 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3831/CH14/EX14.6')
-rw-r--r-- | 3831/CH14/EX14.6/Ex14_6.sce | 60 |
1 files changed, 60 insertions, 0 deletions
diff --git a/3831/CH14/EX14.6/Ex14_6.sce b/3831/CH14/EX14.6/Ex14_6.sce new file mode 100644 index 000000000..94ecc7294 --- /dev/null +++ b/3831/CH14/EX14.6/Ex14_6.sce @@ -0,0 +1,60 @@ +// Example 14_6
+clc;funcprot(0);
+// Given data
+// Loop A
+// Station 1A
+// Compressor A in
+x_1A=1.00;// The dryness fraction
+T_1A=-20.0;// °C
+h_1A=242.05;// kJ/kg
+s_1A=0.95927;// kJ/kg.K
+p_1A=244.8;// kPa
+// Station 2sA
+// Compressor A out
+p_2A=1500;// kPa
+s_2A=s_1A;// kJ/kg.K
+h_2sA=289.08;// kJ/kg
+T_2sA=71.07;// °C
+// Station 3A
+// Condenser A out
+x_3A=0.00;// The dryness fraction
+T_3A=25.0;// °C
+h_3A=74.91;// kJ/kg
+// Station 4hA
+// Expansion A out
+h_4hA=h_3A;// kJ/kg
+// Loop B
+// Station 1B
+// Compressor B in
+x_1B=1.00;// The dryness fraction
+T_1B=-50.0;// °C
+h_1B=228.51;// kJ/kg
+s_1B=1.02512;// kJ/kg.K
+p_1B=63.139;// kPa
+// Station 2sB
+// Compressor B out
+p_2B=300;// kPa
+s_2B=s_1B;// kJ/kg.K
+h_2sB=264.05;// kJ/kg
+T_2sB=15.0;// °C
+// Station 3B
+// Condenser B out
+x_3B=0.00;// The dryness fraction
+T_3B=-20.0;// °C
+h_3B=21.73;// kJ/kg
+// Station 4hB
+// Expansion B out
+h_4hB=h_3B;// kJ/kg
+Q_L=40.0;// tons of refrigeration
+n_s=80/100;// The isentropic efficiencies of both compressors
+
+// (a)
+m_B=(Q_L*210*1/60)/(h_1B-h_4hB);// kg/s
+h_2B=((h_2sB-h_1B)/n_s)+h_1B;// kJ/kg
+m_A=m_B*((h_2B-h_3B)/(h_1A-h_4hA));// kg/s
+// (b)
+COP_dc=(m_B*(h_1B-h_4hB))/(((m_A*(h_2sA-h_1A))/n_s)+((m_B*(h_2sB-h_1B))/n_s));// The coeeficient of performance
+// (c)
+PR_cA=p_2A/p_1A;// The compressor pressure ratio
+PR_cB=p_2B/p_1B;// The compressor pressure ratio
+printf("\n(a)The mass flow rate of refrigerant in loops A and B,m_A=%1.2f kg/s & m_B=%0.3f kg/s \n(b)The system’s coefficient of performance,COP_dual cascade=%1.2f \n(c)The pressure ratios across each of the compressors,PR_compressorA=%1.2f & PR_compressorA=%1.2f",m_A,m_B,COP_dc,PR_cA,PR_cB);
|