diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3831/CH13/EX13.7/Ex13_7.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3831/CH13/EX13.7/Ex13_7.sce')
-rw-r--r-- | 3831/CH13/EX13.7/Ex13_7.sce | 63 |
1 files changed, 63 insertions, 0 deletions
diff --git a/3831/CH13/EX13.7/Ex13_7.sce b/3831/CH13/EX13.7/Ex13_7.sce new file mode 100644 index 000000000..2822ad70e --- /dev/null +++ b/3831/CH13/EX13.7/Ex13_7.sce @@ -0,0 +1,63 @@ +// Example 13_7
+clc;funcprot(0);
+// Given data
+n_s_pm1=84.0/100;// The isentropic efficiency of the first turbine
+n_s_pm2=80.0/100;// The isentropic efficiency of the second turbine
+n_s_p=61.0/100;// The isentropic efficiency of the boiler feed pump
+n_s_pm=82/100;// The isentropic efficiency of the prime mover
+
+// Calculation
+// (a)
+// Station 1
+p_1=600.0;// psia
+T_1=700.0;// °F
+h_1=1350.6;// Btu/lbm
+s_1=1.5874;// Btu/lbm.R
+// Station 2s
+p_2=100.0;// psia
+p_2s=p_2;// psia
+s_2s=s_1;// Btu/(lbm.R)
+s_f2=0.4745;// Btu/(lbm.R)
+s_fg2=1.1291;// Btu/(lbm.R)
+h_f2=298.6;// Btu/lbm
+h_fg2=889.2;// Btu/lbm
+x_2s=(s_2s-s_f2)/s_fg2;// The dryness fraction
+h_2s=h_f2+(x_2s*h_fg2);// Btu/lbm
+// Station 3
+p_3=100.0;// psia
+T_3=700.0;// °F
+x_3=0.00;// The dryness fraction
+s_3=1.8035;// Btu/(lbm.R)
+h_3=1379.2;// Btu/lbm
+// Station 4s
+p_4=1.00;// psia
+p_4s=p_4;// psia
+s_4s=s_3;// Btu/lbm.R
+s_f4=0.1326;// Btu/(lbm.R)
+s_fg4=1.8455;// Btu/(lbm.R)
+h_f4=69.7;// Btu/lbm
+h_fg4=1036.4;// Btu/lbm
+x_4s=(s_4s-s_f4)/s_fg4;// The dryness fraction
+h_4s=h_f4+(x_4s*h_fg4);// Btu/lbm
+// Station 5
+p_5=1.00;// psia
+x_5=0.00;// The dryness fraction
+s_5=0.1326;// Btu/(lbm.R)
+h_5=69.7;// Btu/lbm
+v_5=0.01614;// ft^3/lbm
+// Station 6s
+p_6=600;// psia
+p_6s=p_6;// psia
+s_6s=s_5;// Btu/(lbm.R)
+h_6s=72.5;// Btu/lbm
+v_6s=0.01614;// ft^3/lbm
+h_7s=h_6s+(v_6s*(p_7-p_6)*(144/778.16));// Btu/lbm
+h_2=h_1-((h_1-h_2s)*n_s_pm1);// Btu/lbm
+h_6=h_5+((v_5*(p_6*p_5)*(144/778.16))/(n_s_p));// Btu/lbm
+n_T_wr=((((h_1-h_2s)*n_s_pm1)+((h_3-h_4s)*n_s_pm2)-((v_5*(p_6-p_5)*(144/778.16))/(n_s_p)))/((h_1-h_6)+(h_3-h_2)))*100;// The Rankine cycle thermal efficiency of the plant with reheat in %
+// (b)
+s_4s=s_1;// Btu/(lbm.R)
+x_4s=(s_4s-s_f4)/s_fg4;// The dryness fraction
+h_4s=h_f4+(x_4s*h_fg4);// Btu/lbm
+n_T_wor=((((h_1-h_4s)*n_s_pm)-((h_6s-h_5)/n_s_pm))/(h_1-h_6))*100;// The Rankine cycle thermal efficiency of the plant without reheat in %
+printf("\n(a)The Rankine cycle thermal efficiency of the plant with reheat,n_T=%2.1f percentage \n(b)The Rankine cycle thermal efficiency of the plant without reheat,n_T=%2.1f percentage",n_T_wr,n_T_wor);
|