summaryrefslogtreecommitdiff
path: root/380/CH8
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /380/CH8
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '380/CH8')
-rwxr-xr-x380/CH8/EX8.1/8_1.txt22
-rwxr-xr-x380/CH8/EX8.1/8_1_R.txt12
-rwxr-xr-x380/CH8/EX8.1/Ex8_1.sce22
-rwxr-xr-x380/CH8/EX8.2/8_2.txt19
-rwxr-xr-x380/CH8/EX8.2/8_2_R.txt7
-rwxr-xr-x380/CH8/EX8.2/Ex8_2.sce19
-rwxr-xr-x380/CH8/EX8.3/8_3.txt22
-rwxr-xr-x380/CH8/EX8.3/8_3_R.txt20
-rwxr-xr-x380/CH8/EX8.3/Ex8_3.sce22
-rwxr-xr-x380/CH8/EX8.4/8_4.txt34
-rwxr-xr-x380/CH8/EX8.4/8_4_R.txt27
-rwxr-xr-x380/CH8/EX8.4/Ex8_4.sce34
-rwxr-xr-x380/CH8/EX8.6/8_6.txt20
-rwxr-xr-x380/CH8/EX8.6/8_6_R.txt11
-rwxr-xr-x380/CH8/EX8.6/Ex8_6.sce20
-rwxr-xr-x380/CH8/EX8.7/8_7.txt20
-rwxr-xr-x380/CH8/EX8.7/8_7_R.txt7
-rwxr-xr-x380/CH8/EX8.7/Ex8_7.sce20
18 files changed, 358 insertions, 0 deletions
diff --git a/380/CH8/EX8.1/8_1.txt b/380/CH8/EX8.1/8_1.txt
new file mode 100755
index 000000000..44990b8ed
--- /dev/null
+++ b/380/CH8/EX8.1/8_1.txt
@@ -0,0 +1,22 @@
+//Caption:Find the generated voltage and efficiency of motor
+//Exa:8.1
+clc;
+clear;
+close;
+R_s=(%i)*5;//synchronous reactance of motor
+P_o=10*746;//power output (in Watts)
+P_rot=230;//rotational loss (in Watts)
+P_d=P_o+P_rot;//power developed (in Watts)
+V=230;//in volts
+V_a=V/sqrt(3);//rms value of per phase voltage
+P_fw=70;//feild winding loss
+pf=0.707;//power factor (leading)
+theta=acosd(pf);
+I_ao=P_d/(pf*V*sqrt(3));
+P_in=P_d+P_fw;
+Eff=(P_o/P_in)*100;
+disp(Eff,'efficiency (%)=');
+I_a=I_ao*(cosd(theta)+(%i)*sind(theta));
+E_a=V_a-(I_a*R_s);
+disp(abs(E_a),'magnitude of generated voltage (in Volts)=');
+disp(atand(imag(E_a)/real(E_a)),'Phase angle of generated voltage (in Degree)='); \ No newline at end of file
diff --git a/380/CH8/EX8.1/8_1_R.txt b/380/CH8/EX8.1/8_1_R.txt
new file mode 100755
index 000000000..c04a54f2d
--- /dev/null
+++ b/380/CH8/EX8.1/8_1_R.txt
@@ -0,0 +1,12 @@
+ efficiency (%)=
+
+ 96.134021
+
+ magnitude of generated voltage (in Volts)=
+
+ 248.82011
+
+ Phase angle of generated voltage (in Degree)=
+
+ - 22.82404
+ \ No newline at end of file
diff --git a/380/CH8/EX8.1/Ex8_1.sce b/380/CH8/EX8.1/Ex8_1.sce
new file mode 100755
index 000000000..44990b8ed
--- /dev/null
+++ b/380/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,22 @@
+//Caption:Find the generated voltage and efficiency of motor
+//Exa:8.1
+clc;
+clear;
+close;
+R_s=(%i)*5;//synchronous reactance of motor
+P_o=10*746;//power output (in Watts)
+P_rot=230;//rotational loss (in Watts)
+P_d=P_o+P_rot;//power developed (in Watts)
+V=230;//in volts
+V_a=V/sqrt(3);//rms value of per phase voltage
+P_fw=70;//feild winding loss
+pf=0.707;//power factor (leading)
+theta=acosd(pf);
+I_ao=P_d/(pf*V*sqrt(3));
+P_in=P_d+P_fw;
+Eff=(P_o/P_in)*100;
+disp(Eff,'efficiency (%)=');
+I_a=I_ao*(cosd(theta)+(%i)*sind(theta));
+E_a=V_a-(I_a*R_s);
+disp(abs(E_a),'magnitude of generated voltage (in Volts)=');
+disp(atand(imag(E_a)/real(E_a)),'Phase angle of generated voltage (in Degree)='); \ No newline at end of file
diff --git a/380/CH8/EX8.2/8_2.txt b/380/CH8/EX8.2/8_2.txt
new file mode 100755
index 000000000..1ec7862c9
--- /dev/null
+++ b/380/CH8/EX8.2/8_2.txt
@@ -0,0 +1,19 @@
+//Caption:Find the excitation voltage and power developed
+//Exa:8.2
+clc;
+clear;
+close;
+V=480;//in volts
+V_a=V/sqrt(3);//per phase applied voltage
+I_a=50;//in Amperes
+R_a=0.5;//armature winding resistance
+X_d=(%i)*3.5;//d-axis reactance
+X_q=(%i)*2.5;//q-axis reactance
+E_ao=V_a-(I_a*R_a)-(I_a*X_q);
+delta=atand(imag(E_ao)/real(E_ao));
+I_d=I_a* sind(abs(delta))*(cosd(90+delta)+(%i)*sind(90+delta));//d-axis current
+E_a=E_ao-(I_d*(X_d-X_q));
+E_L=E_a*sqrt(3);
+disp(abs(E_L),'rms value of excitation voltage (in Volts)=');
+P_d=3*real(E_ao*conj(I_a));
+disp(P_d/1000,'power developed by motor (in Kilo-Watts)='); \ No newline at end of file
diff --git a/380/CH8/EX8.2/8_2_R.txt b/380/CH8/EX8.2/8_2_R.txt
new file mode 100755
index 000000000..9640f6f1c
--- /dev/null
+++ b/380/CH8/EX8.2/8_2_R.txt
@@ -0,0 +1,7 @@
+ rms value of excitation voltage (in Volts)=
+
+ 525.89024
+
+ power developed by motor (in Kilo-Watts)=
+
+ 37.819219 \ No newline at end of file
diff --git a/380/CH8/EX8.2/Ex8_2.sce b/380/CH8/EX8.2/Ex8_2.sce
new file mode 100755
index 000000000..1ec7862c9
--- /dev/null
+++ b/380/CH8/EX8.2/Ex8_2.sce
@@ -0,0 +1,19 @@
+//Caption:Find the excitation voltage and power developed
+//Exa:8.2
+clc;
+clear;
+close;
+V=480;//in volts
+V_a=V/sqrt(3);//per phase applied voltage
+I_a=50;//in Amperes
+R_a=0.5;//armature winding resistance
+X_d=(%i)*3.5;//d-axis reactance
+X_q=(%i)*2.5;//q-axis reactance
+E_ao=V_a-(I_a*R_a)-(I_a*X_q);
+delta=atand(imag(E_ao)/real(E_ao));
+I_d=I_a* sind(abs(delta))*(cosd(90+delta)+(%i)*sind(90+delta));//d-axis current
+E_a=E_ao-(I_d*(X_d-X_q));
+E_L=E_a*sqrt(3);
+disp(abs(E_L),'rms value of excitation voltage (in Volts)=');
+P_d=3*real(E_ao*conj(I_a));
+disp(P_d/1000,'power developed by motor (in Kilo-Watts)='); \ No newline at end of file
diff --git a/380/CH8/EX8.3/8_3.txt b/380/CH8/EX8.3/8_3.txt
new file mode 100755
index 000000000..0045bec23
--- /dev/null
+++ b/380/CH8/EX8.3/8_3.txt
@@ -0,0 +1,22 @@
+//Caption:Find (a) power factor (b) power angle (c) line to line excitation voltage (d) torque developed
+//Exa:8.3
+clc;
+clear;
+close;
+V=440;//in volts
+V_a=V/sqrt(3);//per phase voltage
+w_m=188.5;//rad/sec
+X_s=(%i)*(36/3);//per phase reactance
+E_ao=560/sqrt(3);//per-phase excitation voltage
+P_d=9000;//power developed (in Watts)
+delta=asind(-P_d*12/(3*V_a*E_ao));
+E_a=E_ao*(cosd(delta)+(%i)*sind(delta));
+I_a=(V_a-E_a)/X_s;
+alpha=atand(imag(I_a)/real(I_a));
+disp(cosd(alpha),'(a) Power factor=');
+disp(delta,'(b) power angle (in Degree)=');
+E_L=(sqrt(3))*E_a*(cosd(30)+((%i)*sind(30)));
+disp(abs(E_L),'(c) line to line excitation voltage (in Volts)=');
+disp(atand(imag(E_L)/real(E_L)),'phase angle of line to line excitation voltage (in Degree)');
+T_d=P_d/w_m;
+disp(T_d,'(d) Torque developed (in Newton-meter)='); \ No newline at end of file
diff --git a/380/CH8/EX8.3/8_3_R.txt b/380/CH8/EX8.3/8_3_R.txt
new file mode 100755
index 000000000..169f335ec
--- /dev/null
+++ b/380/CH8/EX8.3/8_3_R.txt
@@ -0,0 +1,20 @@
+ (a) Power factor=
+
+ 0.9682794
+
+ (b) power angle (in Degree)=
+
+ - 25.99621
+
+ (c) line to line excitation voltage (in Volts)=
+
+ 560.
+
+ phase angle of line to line excitation voltage (in Degree)
+
+ 4.0037903
+
+ (d) Torque developed (in Newton-meter)=
+
+ 47.745358
+ \ No newline at end of file
diff --git a/380/CH8/EX8.3/Ex8_3.sce b/380/CH8/EX8.3/Ex8_3.sce
new file mode 100755
index 000000000..0045bec23
--- /dev/null
+++ b/380/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,22 @@
+//Caption:Find (a) power factor (b) power angle (c) line to line excitation voltage (d) torque developed
+//Exa:8.3
+clc;
+clear;
+close;
+V=440;//in volts
+V_a=V/sqrt(3);//per phase voltage
+w_m=188.5;//rad/sec
+X_s=(%i)*(36/3);//per phase reactance
+E_ao=560/sqrt(3);//per-phase excitation voltage
+P_d=9000;//power developed (in Watts)
+delta=asind(-P_d*12/(3*V_a*E_ao));
+E_a=E_ao*(cosd(delta)+(%i)*sind(delta));
+I_a=(V_a-E_a)/X_s;
+alpha=atand(imag(I_a)/real(I_a));
+disp(cosd(alpha),'(a) Power factor=');
+disp(delta,'(b) power angle (in Degree)=');
+E_L=(sqrt(3))*E_a*(cosd(30)+((%i)*sind(30)));
+disp(abs(E_L),'(c) line to line excitation voltage (in Volts)=');
+disp(atand(imag(E_L)/real(E_L)),'phase angle of line to line excitation voltage (in Degree)');
+T_d=P_d/w_m;
+disp(T_d,'(d) Torque developed (in Newton-meter)='); \ No newline at end of file
diff --git a/380/CH8/EX8.4/8_4.txt b/380/CH8/EX8.4/8_4.txt
new file mode 100755
index 000000000..b89a991d6
--- /dev/null
+++ b/380/CH8/EX8.4/8_4.txt
@@ -0,0 +1,34 @@
+//Caption:Find (a)excitation voltage (b)power developed due to feild excitation (c)power developed due to saliency of motor (d)total power developed (e)efficiency (f)max power
+//Exa:8.4
+clc;
+clear;
+close;
+pf=0.8;//lagging
+theta=-acosd(pf);
+V_a=120;//in V
+X_d=2.7;//d-axis reactance (in ohms/phase)
+X_q=1.7;//q-axis reactances (in ohms/phase)
+I_a=40*(cosd(-36.87)+%i*sind(-36.87));//in Amperes
+E_a_dash=V_a-%i*(I_a*X_q);//in Volts
+delta=atand(imag(E_a_dash)/real(E_a_dash));//in degree
+alpha=polar(theta-delta);//in degree
+I_d=abs(I_a)*sind(alpha)*(cosd(-34.48-90)+%i*sind(-34.48-90));
+E_a=E_a_dash-%i*I_d*(X_d-X_q);
+disp(abs(E_a),'(a) per-phase excitation voltage(in Volts)=');
+disp(atand(imag(E_a)/real(E_a)),'phase angle of excitation voltage (in degree)=');
+P_df=(3*V_a*abs(E_a)*sind(34.48))/X_d;
+disp(P_df,'(b) power developed due to feild excitation(in Watts)=');
+P_ds=((X_d-X_q)*sind(2*34.48)*3*V_a^2)/(2*X_d*X_q);
+disp(P_ds,'(c) power developed due to saliency of motor (in Watts)=');
+P_d=P_df+P_ds;
+disp(P_d,'(d) total power developed (in Watts)=');
+P_r=0.05*P_d;//rotational loss (in Watts)
+P_in=3*real(V_a*conj(I_a));//power input (in Watts)
+P_o=P_in-P_r;//power output (in Watts)
+Eff=(P_o/P_in)*100;
+disp(Eff,'(e) Efficiency (in %)=');
+//refer to eqn 8.24
+A=(3*120*abs(E_a))/X_d;
+B=3*(X_d-X_q)*120^2/(2*X_d*X_q);
+P_dm=A*sind(63.4)+B*sind(2*63.4);
+disp(P_dm,'(f) maximum power developed (in Watts)='); \ No newline at end of file
diff --git a/380/CH8/EX8.4/8_4_R.txt b/380/CH8/EX8.4/8_4_R.txt
new file mode 100755
index 000000000..04e647fe3
--- /dev/null
+++ b/380/CH8/EX8.4/8_4_R.txt
@@ -0,0 +1,27 @@
+ (a) per-phase excitation voltage(in Volts)=
+
+ 94.417952
+
+ phase angle of excitation voltage (in degree)=
+
+ - 34.48402
+
+ (b) power developed due to feild excitation(in Watts)=
+
+ 7126.9003
+
+ (c) power developed due to saliency of motor (in Watts)=
+
+ 4392.1412
+
+ (d) total power developed (in Watts)=
+
+ 11519.041
+
+ (e) Efficiency (in %)=
+
+ 95.000409
+
+ (f) maximum power developed (in Watts)=
+
+ 15024.709 \ No newline at end of file
diff --git a/380/CH8/EX8.4/Ex8_4.sce b/380/CH8/EX8.4/Ex8_4.sce
new file mode 100755
index 000000000..b89a991d6
--- /dev/null
+++ b/380/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,34 @@
+//Caption:Find (a)excitation voltage (b)power developed due to feild excitation (c)power developed due to saliency of motor (d)total power developed (e)efficiency (f)max power
+//Exa:8.4
+clc;
+clear;
+close;
+pf=0.8;//lagging
+theta=-acosd(pf);
+V_a=120;//in V
+X_d=2.7;//d-axis reactance (in ohms/phase)
+X_q=1.7;//q-axis reactances (in ohms/phase)
+I_a=40*(cosd(-36.87)+%i*sind(-36.87));//in Amperes
+E_a_dash=V_a-%i*(I_a*X_q);//in Volts
+delta=atand(imag(E_a_dash)/real(E_a_dash));//in degree
+alpha=polar(theta-delta);//in degree
+I_d=abs(I_a)*sind(alpha)*(cosd(-34.48-90)+%i*sind(-34.48-90));
+E_a=E_a_dash-%i*I_d*(X_d-X_q);
+disp(abs(E_a),'(a) per-phase excitation voltage(in Volts)=');
+disp(atand(imag(E_a)/real(E_a)),'phase angle of excitation voltage (in degree)=');
+P_df=(3*V_a*abs(E_a)*sind(34.48))/X_d;
+disp(P_df,'(b) power developed due to feild excitation(in Watts)=');
+P_ds=((X_d-X_q)*sind(2*34.48)*3*V_a^2)/(2*X_d*X_q);
+disp(P_ds,'(c) power developed due to saliency of motor (in Watts)=');
+P_d=P_df+P_ds;
+disp(P_d,'(d) total power developed (in Watts)=');
+P_r=0.05*P_d;//rotational loss (in Watts)
+P_in=3*real(V_a*conj(I_a));//power input (in Watts)
+P_o=P_in-P_r;//power output (in Watts)
+Eff=(P_o/P_in)*100;
+disp(Eff,'(e) Efficiency (in %)=');
+//refer to eqn 8.24
+A=(3*120*abs(E_a))/X_d;
+B=3*(X_d-X_q)*120^2/(2*X_d*X_q);
+P_dm=A*sind(63.4)+B*sind(2*63.4);
+disp(P_dm,'(f) maximum power developed (in Watts)='); \ No newline at end of file
diff --git a/380/CH8/EX8.6/8_6.txt b/380/CH8/EX8.6/8_6.txt
new file mode 100755
index 000000000..83ca56716
--- /dev/null
+++ b/380/CH8/EX8.6/8_6.txt
@@ -0,0 +1,20 @@
+//Caption:Find the (a) new armature current (b) new power factor
+//Exa:8.6
+clc;
+clear;
+close;
+V=208;//in Volts
+V_a=V/sqrt(3);//in volts
+P=7200;//in Watts
+X_a=4;//synchronous reactance
+pf=0.8;//lagging
+theta=-acosd(pf);
+I_a=(P/(3*V_a*pf))*(cosd(theta)+%i*sind(theta));//Armature current (in Amperes)
+E_a=V_a-(I_a*%i*X_a);//in Volts
+E_an=1.5*abs(E_a);//new excitation voltage (in Volts)
+delta_n=-asind(P*X_a/(3*E_an*V_a));//new torque angle
+I_an=(V_a-E_an*(cosd(delta_n)+%i*sind(delta_n)))/(%i*4);
+disp(abs(I_an),'(a) New armature current (in Ampere)=');
+disp(atand(imag(I_an)/real(I_an)),'Phase angle of new armature current (in Degree)=');
+pf_n=cosd(atand(imag(I_an)/real(I_an)));
+disp(pf_n,'(b) New Power factor='); \ No newline at end of file
diff --git a/380/CH8/EX8.6/8_6_R.txt b/380/CH8/EX8.6/8_6_R.txt
new file mode 100755
index 000000000..dc68a3de4
--- /dev/null
+++ b/380/CH8/EX8.6/8_6_R.txt
@@ -0,0 +1,11 @@
+ (a) New armature current (in Ampere)=
+
+ 20.059341
+
+ Phase angle of new armature current (in Degree)=
+
+ 4.9276299
+
+ (b) New Power factor=
+
+ 0.9963040 \ No newline at end of file
diff --git a/380/CH8/EX8.6/Ex8_6.sce b/380/CH8/EX8.6/Ex8_6.sce
new file mode 100755
index 000000000..83ca56716
--- /dev/null
+++ b/380/CH8/EX8.6/Ex8_6.sce
@@ -0,0 +1,20 @@
+//Caption:Find the (a) new armature current (b) new power factor
+//Exa:8.6
+clc;
+clear;
+close;
+V=208;//in Volts
+V_a=V/sqrt(3);//in volts
+P=7200;//in Watts
+X_a=4;//synchronous reactance
+pf=0.8;//lagging
+theta=-acosd(pf);
+I_a=(P/(3*V_a*pf))*(cosd(theta)+%i*sind(theta));//Armature current (in Amperes)
+E_a=V_a-(I_a*%i*X_a);//in Volts
+E_an=1.5*abs(E_a);//new excitation voltage (in Volts)
+delta_n=-asind(P*X_a/(3*E_an*V_a));//new torque angle
+I_an=(V_a-E_an*(cosd(delta_n)+%i*sind(delta_n)))/(%i*4);
+disp(abs(I_an),'(a) New armature current (in Ampere)=');
+disp(atand(imag(I_an)/real(I_an)),'Phase angle of new armature current (in Degree)=');
+pf_n=cosd(atand(imag(I_an)/real(I_an)));
+disp(pf_n,'(b) New Power factor='); \ No newline at end of file
diff --git a/380/CH8/EX8.7/8_7.txt b/380/CH8/EX8.7/8_7.txt
new file mode 100755
index 000000000..0e0f2376c
--- /dev/null
+++ b/380/CH8/EX8.7/8_7.txt
@@ -0,0 +1,20 @@
+//Caption:Find the overall power factor and power factor of motor to improve overall power factor
+//Exa:8.7
+clc;
+clear;
+close;
+//for load:
+theta_L=acosd(0.6);//lag (in degree)
+S_L=100*(cosd(53.13)+%i*sind(53.13));//in KVA
+//for synchronous motor:
+theta_m=acosd(0.5);//lead (in degree)
+S_m=(10/0.5)*conj(cosd(theta_m)+%i*sind(theta_m));//in Watts
+S_t=S_L+S_m;//overall power (in Watts)
+pf=cosd(atand(imag(S_t)/real(S_t)));
+disp(pf,'overall power factor=');
+//for power factor=0.9
+theta_t=25.84;
+S_tn=(real(S_t)/0.9)*(cosd(theta_t)+%i*sind(theta_t));//in KVA
+S_mn=S_tn-S_L;//in KVA
+pf_n=cosd(atand(imag(S_mn)/real(S_mn)));
+disp(pf_n,'power factor of motor to improve overall power factor to 0.9='); \ No newline at end of file
diff --git a/380/CH8/EX8.7/8_7_R.txt b/380/CH8/EX8.7/8_7_R.txt
new file mode 100755
index 000000000..f56fdaf64
--- /dev/null
+++ b/380/CH8/EX8.7/8_7_R.txt
@@ -0,0 +1,7 @@
+ overall power factor=
+
+ 0.7449891
+
+ power factor of motor to improve overall power factor to 0.9=
+
+ 0.2120143 \ No newline at end of file
diff --git a/380/CH8/EX8.7/Ex8_7.sce b/380/CH8/EX8.7/Ex8_7.sce
new file mode 100755
index 000000000..0e0f2376c
--- /dev/null
+++ b/380/CH8/EX8.7/Ex8_7.sce
@@ -0,0 +1,20 @@
+//Caption:Find the overall power factor and power factor of motor to improve overall power factor
+//Exa:8.7
+clc;
+clear;
+close;
+//for load:
+theta_L=acosd(0.6);//lag (in degree)
+S_L=100*(cosd(53.13)+%i*sind(53.13));//in KVA
+//for synchronous motor:
+theta_m=acosd(0.5);//lead (in degree)
+S_m=(10/0.5)*conj(cosd(theta_m)+%i*sind(theta_m));//in Watts
+S_t=S_L+S_m;//overall power (in Watts)
+pf=cosd(atand(imag(S_t)/real(S_t)));
+disp(pf,'overall power factor=');
+//for power factor=0.9
+theta_t=25.84;
+S_tn=(real(S_t)/0.9)*(cosd(theta_t)+%i*sind(theta_t));//in KVA
+S_mn=S_tn-S_L;//in KVA
+pf_n=cosd(atand(imag(S_mn)/real(S_mn)));
+disp(pf_n,'power factor of motor to improve overall power factor to 0.9='); \ No newline at end of file