summaryrefslogtreecommitdiff
path: root/3792/CH6/EX6.7
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3792/CH6/EX6.7
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3792/CH6/EX6.7')
-rw-r--r--3792/CH6/EX6.7/Ex6_7.sce38
1 files changed, 38 insertions, 0 deletions
diff --git a/3792/CH6/EX6.7/Ex6_7.sce b/3792/CH6/EX6.7/Ex6_7.sce
new file mode 100644
index 000000000..01def36a9
--- /dev/null
+++ b/3792/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,38 @@
+// SAMPLE PROBLEM 6/7
+clc;funcprot(0);
+// Given data
+W=60;// lb
+theta=30;// degree
+F=30;// lb
+BGbar=2;// ft
+AGbar=2;// ft
+l=4;// ft
+g=32.2;// The acceleration due to gravity in ft/sec^2
+
+// Calculation
+// abar_x=abar*cos(theta)=1.732*alpha;
+// abar_y=abar*sin(theta)=1.0*alpha;
+function[X]=force(y)
+ // SigmaM_G=Ibar*alpha;
+ X(1)=((F*(2*cosd(theta)))-(y(1)*(AGbar*sind(theta)))+(y(2)*(BGbar*cosd(theta))))-((1/12)*(W/g)*l^2*y(3));
+ // SigmaF_x=m*abar_x;
+ X(2)=(F-y(2))-((W/g)*(2*cosd(theta)*y(3)));
+ // SigmaF_y=m*abar_y;
+ X(3)=(y(1)-W)-((W/g)*2*sind(theta)*y(3));
+endfunction
+y=[10 10 1];
+z=fsolve(y,force);
+A=z(1);// lb
+B=z(2);// lb
+alpha=z(3);// rad/sec^2
+printf("\nThe forces on the small end rollers ,A=%2.1f lb and B=%2.2f lb \nThe resulting angular acceleration of the bar,alpha=%1.2f rad/sec^2",A,B,alpha);
+// Alternative solution
+// SigmaM_C=(Ibar*alpha)+(Sigma m*abar*d)
+alpha=((F*(l*cosd(theta)))-(W*2*sind(theta)))/(((1/12)*(W/g)*l^2)+((W/g)*1.732*2*cosd(theta))+((W/g)*1*2*sind(theta)));// rad/sec^2
+// SigmaF_x=m*abar_x;
+abar_y=2*alpha*sind(theta);// ft
+A=((W/g)*abar_y)+W;// lb
+// SigmaF_x=m*abar_x;
+abar_x=2*alpha*cosd(theta);// ft
+B=F-((W/g)*abar_x);// lb
+printf("\nAlternative solution: \nThe forces on the small end rollers ,A=%2.1f lb and B=%2.2f lb \nThe resulting angular acceleration of the bar,alpha=%1.2f rad/sec^2",A,B,alpha);