diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3785/CH9/EX9.8 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3785/CH9/EX9.8')
-rw-r--r-- | 3785/CH9/EX9.8/Ex9_8.sce | 46 |
1 files changed, 46 insertions, 0 deletions
diff --git a/3785/CH9/EX9.8/Ex9_8.sce b/3785/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..c39ef76ed --- /dev/null +++ b/3785/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,46 @@ +// Example 9_8
+clc;funcprot(0);
+// Given data
+L=50;// Lengths of garden hose in ft
+D_A=3/4;// Diameter of hose A in inch
+D_B=1/2;// Diameter of hose B in inch
+p=40;// Pressure in the tank in psig
+nu=1.0*10^-6;// The kinematic viscosity in m/s^2
+rho=1*10^3;// The density of water in kg/m^3
+g=9.807;// The acceleration due to gravity in m/s^2
+epsilon=0;
+
+// Calculation
+D_A=D_A*2.54*10^-2;// m
+D_B=D_B*2.54*10^-2;// m
+L=L*0.3048;// m
+deltah_l1=(p*6.895*10^3)/(rho*g);// m
+deltah_A1=10;// m
+deltah_B1=18.12;// m
+sqrtoffintoRe_D_A=((2*g*deltah_A1*D_A^3)/(((nu)^2)*L))^(1/2);
+Re_D_A=-2*sqrtoffintoRe_D_A*log10(2.51/(sqrtoffintoRe_D_A));// Reynolds number
+Q_A1=(%pi*D_A*nu*Re_D_A)/4;// The volume flow rate in m^3/s
+sqrtoffintoRe_D_B=((2*g*deltah_B1*D_B^3)/(((nu)^2)*L))^(1/2);
+Re_D_B=-2*sqrtoffintoRe_D_B*log10((2.51/(sqrtoffintoRe_D_B)));// Reynolds number
+Q_B1=(%pi*D_B*nu*Re_D_B)/4;// The volume flow rate in m^3/s
+V_A=(4*Q_A1)/(%pi*D_A^2);// m/s
+V_B=(4*Q_B1)/(%pi*D_B^2);// m/s
+// Assume deltah=SigmaK*((V^2)/(2*g))
+deltah=((0.4*V_A^2)+(0.4*V_B^2))/(2*g);// m
+deltah_f=deltah_l1-deltah;// m
+// We decide to allocate this total to
+deltah_A2=2;// m
+deltah_B2=25.43;// m
+sqrtoffintoRe_D_A=((2*g*deltah_A2*D_A^3)/(((nu)^2)*L))^(1/2);
+Re_D_A=-2*sqrtoffintoRe_D_A*log10((2.51/(sqrtoffintoRe_D_A)));// Reynolds number
+Q_A2=(%pi*D_A*nu*Re_D_A)/4;// The volume flow rate in m^3/s
+sqrtoffintoRe_D_B=((2*g*deltah_B2*D_B^3)/(((nu)^2)*L))^(1/2);
+Re_D_B=-2*sqrtoffintoRe_D_B*log10((2.51/(sqrtoffintoRe_D_B)));// Reynolds number
+Q_B2=(%pi*D_B*nu*Re_D_B)/4;// The volume flow rate in m^3/s
+V_A=(4*Q_A2)/(%pi*D_A^2);// m/s
+V_B=(4*Q_B2)/(%pi*D_B^2);// m/s
+deltah_l2=((0.4*V_A^2)+(0.4*V_B^2))/(2*g);// m
+//Indicating the first and second guesses by '1' and '2' we find a third guess to be:
+deltah=deltah_A2-((Q_A2-Q_B2)*((deltah_A1-deltah_A2)/((Q_A1-Q_B1)-(Q_A2-Q_B2))));// m
+printf('\nThe flow rate through the hoses Q_A=%1.3e m^3/s;Q_B=%1.3e m^3/s;SigmaK(V^2/2g)=%0.4f m',Q_A2,Q_B2,deltah_l2);
+// The answer is vary due to roundoff error
|