diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3785/CH5 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3785/CH5')
-rw-r--r-- | 3785/CH5/EX5.10/Ex5_10.sce | 13 | ||||
-rw-r--r-- | 3785/CH5/EX5.11/Ex5_11.sce | 11 | ||||
-rw-r--r-- | 3785/CH5/EX5.12/Ex5_12.sce | 19 | ||||
-rw-r--r-- | 3785/CH5/EX5.13/Ex5_13.sce | 20 | ||||
-rw-r--r-- | 3785/CH5/EX5.16/Ex5_16.sce | 14 | ||||
-rw-r--r-- | 3785/CH5/EX5.4/Ex5_4.sce | 13 | ||||
-rw-r--r-- | 3785/CH5/EX5.5/Ex5_5.sce | 13 | ||||
-rw-r--r-- | 3785/CH5/EX5.6/Ex5_6.sce | 9 | ||||
-rw-r--r-- | 3785/CH5/EX5.7/Ex5_7.sce | 16 | ||||
-rw-r--r-- | 3785/CH5/EX5.8/Ex5_8.sce | 22 | ||||
-rw-r--r-- | 3785/CH5/EX5.9/Ex5_9.sce | 11 |
11 files changed, 161 insertions, 0 deletions
diff --git a/3785/CH5/EX5.10/Ex5_10.sce b/3785/CH5/EX5.10/Ex5_10.sce new file mode 100644 index 000000000..015f2b725 --- /dev/null +++ b/3785/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,13 @@ +// Example 5_10
+clc;funcprot(0);
+// Given data
+A_w=100;// The wake area in m^2
+x=100;// m
+// From example 5.7,
+rho_w=0.4;// The density of air in kg/m^3
+V_f=250;// The speed of flight in m/s
+F=2.6*10^4;// The restraining force in N
+
+// Calculation
+V_w=V_f+(F/(rho_w*A_w*V_f));// m/s
+printf("\nThe wake speed,V_w=%3.1f m/s",V_w);
diff --git a/3785/CH5/EX5.11/Ex5_11.sce b/3785/CH5/EX5.11/Ex5_11.sce new file mode 100644 index 000000000..e8072f038 --- /dev/null +++ b/3785/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,11 @@ +// Example 5_11
+clc;funcprot(0);
+// Given data
+V_s=1;// The speed of water jet in m/s
+D_s=3;// The diameter of a hole in cm
+D_j=10;// The jet diameter in cm
+x=1;// Distance from the source in m
+
+// Calculation
+V_j=V_s*(D_s/D_j);// m/s
+printf("\nThe value of the jet speed V_j at that point is %0.1f m/s.",V_j);
diff --git a/3785/CH5/EX5.12/Ex5_12.sce b/3785/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..f6d099d2c --- /dev/null +++ b/3785/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,19 @@ +// Example 5_12
+clc;funcprot(0);
+// Given data
+D_s=1;// The diameter of jet in inch
+D=3;// The inside diameter of a pipe in inch
+Q_s=100;// The jet volumetric flow rate in GPM (gallons per minute)
+Q_1=500;// The volumetric flow rate in GPM
+rho=1*10^3;// The density of water in kg/m^3
+
+// Calculation
+A_s=(%pi/4)*(D_s*2.54*10^-2)^2;// m^2
+A=9*A_s;// m^2
+Q_s=(Q_s*3.785*10^-3)/60;// m^3/s
+Q_1=5*Q_s;// m^3/s
+V_1=Q_1/(A-A_s);// m/s
+V_s=Q_s/A_s;// m/s
+// Assume dp=p_2-p_1;
+dp=(A_s/A)*(1-(A_s/A))*rho*(V_s-V_1)^2;// The pressure rise in the jet pump in Pa
+printf("\nThe pressure rise in the jet pump,p_2-p_1=%1.3e Pa",dp);
diff --git a/3785/CH5/EX5.13/Ex5_13.sce b/3785/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..e77b1d298 --- /dev/null +++ b/3785/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,20 @@ +// Example 5_13
+clc;funcprot(0);
+// Given data
+h=100;// Height in m
+A_n=1.0;// The area of the turbine jet stream in in^2
+alpha=20;// The blade angle in degree
+g=9.807;// The acceleration due to gravity in m/s^2
+rho=1*10^3;// The density of water in kg/m^3
+
+// Calculation
+// (a)
+V_n=sqrt(2*g*h);// The nozzle velocity V_n in m/s
+printf("\n(a)The nozzle velocity V_n=%2.2f m/s",V_n);
+// (b)
+maxP_b=((1+cosd(alpha))/2)*(rho*(A_n*2.54*10^-2)^2*(V_n^3/2))/1000;// The maximum power P, of the turbine in kW
+printf("\n(b)The maximum power P_t of the turbine is %2.2f kW.",maxP_b);
+// (c)
+V_b=V_n/2;// The blade speed in m/s
+F_b=rho*(A_n*2.54*10^-2)^2*(V_n-V_b)^2*(1+cosd(alpha));// The force in N
+printf("\n(c)The blade speed,V_b=%2.2f m/s \n The force when maximum power is being produced,F_b=%3.1f N",V_b,F_b);
diff --git a/3785/CH5/EX5.16/Ex5_16.sce b/3785/CH5/EX5.16/Ex5_16.sce new file mode 100644 index 000000000..09c9cb345 --- /dev/null +++ b/3785/CH5/EX5.16/Ex5_16.sce @@ -0,0 +1,14 @@ +// Example 5_16
+clc;funcprot(0);
+// Given data
+A=10;// The internal area of the rotating tube in mm^2
+V=5;// The speed of water flow in m/s
+alpha=30;// Angle in degree
+R=10;// The tip radial dimension in mm
+T=2*10^-2;// Torque in Nm
+rho=1*10^3;// The density of water in kg/m^3
+
+// Calculation
+omega=(V/(R*10^-2)*cosd(alpha))-((T)/(2*rho*(A*10^-6)*(R/100)^2*V));// The angular speed of the sprinkler rotor in s^-1
+V=[(V*sind(alpha)),((V*cosd(alpha))-(omega*R*10^-2))];// The velocity V of the fluid stream relative to the ground in m/s
+printf("\n(a)The angular speed of the sprinkler rotor,omega=%2.2f s^-1 \n(b)The velocity V in the ground reference frame is:V=(%1.1f m/s)i_r+(%1.1f m/s)i_theta",omega,V(1),V(2));
diff --git a/3785/CH5/EX5.4/Ex5_4.sce b/3785/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..368374171 --- /dev/null +++ b/3785/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,13 @@ +// Example 5_4
+clc;funcprot(0);
+// Given data
+Q=150;// The water stream volume flow rate in gal/min
+D=1;// The nozzle exit diameter in inch
+rho=1*10^3;// The density of water in kg/m^3
+
+// Calculation
+Q=(Q*3.785*10^-3)/60;// The water stream volume flow rate in m^3/s
+V_out=(4*Q)/(%pi*(D*2.54*10^-2)^2);// The velocity in m/s
+F_e=rho*Q*V_out;// The force in N
+F_e=F_e/4.448;// The force in lbf
+printf("\nThe force,F_e=%2.2f lbf",F_e);
diff --git a/3785/CH5/EX5.5/Ex5_5.sce b/3785/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..46f27d1ef --- /dev/null +++ b/3785/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,13 @@ +// Example 5_5
+clc;funcprot(0);
+// Given data
+D=1;// Diameter of hose at inlet in inch
+d=2;// Diameter of hose at outlet in inch
+// From example 5.4,F_e=rho*Q*V_out
+F_e=176.8;// The force in N
+
+// Calculation
+// F_c=rho*Q*V_out*[1/2*((A_in/A_out)+(A_out/A_in)-1];
+// A_in=4*A_out
+F_c=F_e*((1/2)*(4+(1/4))-1);// The force exerted on the nozzle by the coupling in N
+printf("\n The force exerted on the nozzle by the coupling,F_c=%3.1f N",F_c);
diff --git a/3785/CH5/EX5.6/Ex5_6.sce b/3785/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..a9342e564 --- /dev/null +++ b/3785/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,9 @@ +// Example 5_6
+clc;funcprot(0);
+// Given data
+m=2;// The mass flow rate in kg/s
+V_e=200;// The rocket exhaust velocity in m/s
+
+// Calculation
+F=m*V_e;// The restraining force required to hold the rocket in place in N
+printf("\nThe restraining force required to hold the rocket in place,F_c=%0.0f N",F);
diff --git a/3785/CH5/EX5.7/Ex5_7.sce b/3785/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..e9fe0a268 --- /dev/null +++ b/3785/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,16 @@ +// Example 5_7
+clc;funcprot(0);
+// Given data
+V_f=250;// The speed of flight in m/s
+rho_a=0.4;// The density of air in kg/m^3
+A_in=1;// The inlet area in m^2
+m_f=2;// The mass flow rate of fuel in kg/s
+V_e=500;// The speed of exhaust jet in m/s
+
+// Calculation
+m_in=rho_a*V_f*A_in;// The mass flow rate of air at inlet in kg/s
+m_out=m_in+m_f;// The mass flow rate of air at outlet in kg/s
+F=(m_out*V_e)-(m_in*V_f);// The force exerted on the engine by the airframe in N
+printf("\nThe value of the force F exerted on the engine by the airframe is %1.1e N",F);
+
+
diff --git a/3785/CH5/EX5.8/Ex5_8.sce b/3785/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..4ffb4feab --- /dev/null +++ b/3785/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,22 @@ +// Example 5_8
+clc;funcprot(0);
+// Given data
+V_f=200;// The speed of flying air plane in km/h
+rho=1.2;// The density of air in kg/m^3
+F=3*10^3;// The propulsive force in N
+D_p=2;// The diameter of the propeller in m
+
+// Calculation
+// (a)
+V_f=(V_f*10^3)/3600;// The speed of flying air plane in m/s
+A_p=(%pi*D_p^2)/4;// Area of propeller in m^2
+V_w=sqrt((V_f^2)+((2*F)/(rho*A_p)));// The wake speed in m/s
+printf("\nThe wake speed,V_w=%2.2f m/s",V_w);
+
+// (b)
+n_prop=(2*V_f)/(V_w+V_f)*100;// The propulsive efficiency in %
+printf("\nThe propulsive efficiency is %2.2f percentage",n_prop);
+// (c)
+
+P_p=(F*(V_w+V_f))/(2*10^3);// The engine powerin kW
+printf("\nThe engine power for this air craft is %3.1f kW",P_p);
diff --git a/3785/CH5/EX5.9/Ex5_9.sce b/3785/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..681055ee6 --- /dev/null +++ b/3785/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,11 @@ +// Example 5_9
+clc;funcprot(0);
+// Given data
+D=6;// The diameter of wind turbine in m
+V_w=20;// The wind speed in m/s
+rho=1.2;// The density of air in kg/m^3
+
+// Calculation
+A_p=((%pi/4)*(6)^2);// m^2
+maxP_wt=((8/27)*(rho)*A_p*(V_w*0.447)^3)/1000;// The maximum power that can be generated by a wind turbine in kW
+printf("\nThe maximum power that can be generated by a wind turbine is %1.3f kW",maxP_wt);
|