diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3776/CH11 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3776/CH11')
-rw-r--r-- | 3776/CH11/EX11.11/Ex11_11.sce | 59 | ||||
-rw-r--r-- | 3776/CH11/EX11.2/Ex11_2.sce | 16 | ||||
-rw-r--r-- | 3776/CH11/EX11.6/Ex11_6.sce | 37 | ||||
-rw-r--r-- | 3776/CH11/EX11.7/Ex11_7.sce | 20 | ||||
-rw-r--r-- | 3776/CH11/EX11.8/Ex11_8.sce | 19 | ||||
-rw-r--r-- | 3776/CH11/EX11.9/Ex11_9.sce | 36 |
6 files changed, 187 insertions, 0 deletions
diff --git a/3776/CH11/EX11.11/Ex11_11.sce b/3776/CH11/EX11.11/Ex11_11.sce new file mode 100644 index 000000000..510361b42 --- /dev/null +++ b/3776/CH11/EX11.11/Ex11_11.sce @@ -0,0 +1,59 @@ +clear +// +P = 200.0 //K The force on the beam +L = 15 //ft - The length of the rod +F_y = 50.0 //ksi +F_a = F_y/(5.0/3) //ksi -AISC MANUAL ,allowable axial stress if axial force is alone +F_b = F_a //Allowable compressive bending stress +M_1 = 600.0 //k-in - The moment acting on the ends of the rod +M_2 = 800.0 //k-in - the moment acting on the other end of teh rod +B_x = 0.264 //in - Extracted from AISC manual +E = 29*(10**3) +A = P/F_a + M_2*B_x/F_b //in2- The minimum area +printf("\n \n The minimum area is %0.2f in^2",A) +//we will select W10x49 section +A_s = 14.4 //in2 - The area of the section +r_min = 2.54 //in The minimum radius +r_x = 4.35 //in +f_a = P/A_s //Ksi- The computed axial stress +f_b = M_2*B_x/A_s //Computed bending stess +C_c = ((2*(%pi**2)*E/F_y)**0.5) //Slenderness ratio L/R +C_s = L*12/r_min // Slenderness ratio L/R of the present situation +if C_s <C_c then + printf("\n The following approch is solvable") +else + printf("\n The caliculation is not possible") + end +F_a_1 = 19.3 //Ksi - AISC lets try this +c_m = 0.6 - 0.4*(-M_1/M_2) +F_e = (12*(%pi**2)*E)/(23*(L*12/r_x)**2) +k = f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b //Condition mentioned in AISC +if k>1 then + printf("\n The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f >1",k) +else + printf("\n The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f <1",k) + end +//trail - 2 +//Lets take W10 x 60 +A_s = 17.6 //in2 - The area of the section +r_min = 2.57 //in The minimum radius +r_x = 4.39 //in +f_a = P/A_s //Ksi- The computed axial stress +f_b = M_2*B_x/A_s //Computed bending stess +C_c = ((2*(%pi**2)*E/F_y)**0.5) //Slenderness ratio L/R +C_s = L*12/r_min // Slenderness ratio L/R of the present situation +if C_s <C_c then + printf("\n The following approch is solvable") +else + printf("\n The caliculation is not possible") + end +F_a_1 = 19.3 //Ksi - AISC lets try this +c_m = 0.6 - 0.4*(-M_1/M_2) +F_e = (12*(%pi**2)*E)/(23*(L*12/r_x)**2) +k = f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b //Condition mentioned in AISC +if k>1 then + printf("\n The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f >1",k) +else + printf("\n The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f <1",k) + end +printf("\n small variation due to rounding off errors")
\ No newline at end of file diff --git a/3776/CH11/EX11.2/Ex11_2.sce b/3776/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..a11f41c53 --- /dev/null +++ b/3776/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,16 @@ +clear +//Given +// +h = 60 //mm - the length of the crossection +b = 100 //mm - the width of hte crossection +E = 200 //Gpa - The youngs modulus +stress_cr = 250 //MPa - The proportionality limit +//Caliculations + +I = b*(h**3)/12 //mm3 The momentof inertia of the crossection +A = h*b //mm2 - The area of teh crossection +//From Eulier formula +r_min = ((I/A)**0.5) //mm - The radius of the gyration +//(l/r)**2= (%pi**2)*E/stress_cr //From Eulier formula +l = (((%pi**2)*E*(10**3)/stress_cr)**0.5)*r_min //mm - the length after which the beam starts buckling +printf("\n The length after which the beam starts buckling is %0.0f mm",l) diff --git a/3776/CH11/EX11.6/Ex11_6.sce b/3776/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..a095bf461 --- /dev/null +++ b/3776/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,37 @@ +clear +//Given +// +L = 15 //ft - The length of the each rod +A = 46.7 //in2 - The length of the crossection +r_min = 4 //in - The radius of gyration +stress_yp = 36 //ksi - the yielding point stress +E = 29*(10**3) //ksi - The youngs modulus +C_c = ((2*(%pi**2)*E/stress_yp)**0.5) //Slenderness ratio L/R +C_s = L*12/r_min // Slenderness ratio L/R of the present situation +//According to AISC formulas +if (C_s <C_c) then + printf ("a)The following approch is solvable") +else + print ("The caliculation is not possible") + end +F_S = 5.0/3 +3*C_s/(8*C_c) -(3*C_s**3)/(8*C_c**3) //Safety factor +Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable strees +printf("\n a) The allowable stress in this case is %0.2f kips",Stress_all) +//Part - B +//Given +L = 40 //ft - The length of the each rod +A = 46.7 //in2 - The length of the crossection +r_min = 4 //in - The radius of gyration +stress_yp = 36 //ksi - the yielding point stress +E = 29*(10**3) //ksi - The youngs modulus +C_c = ((2*(%pi**2)*E/stress_yp)**0.5) //Slenderness ratio L/R +C_s = L*12/r_min // Slenderness ratio L/R of the present situation +//According to AISC formulas +if C_s <C_c then + printf("b) The following approch is solvable") +else + printf("The caliculation is not possible") +end +F_S = 5.0/3 +3*C_s/(8*C_c) -(3*C_s**3)/(8*C_c**3) //Safety factor +Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable strees +printf("\n b) The allowable stress in this case is %0.2f kips",Stress_all) diff --git a/3776/CH11/EX11.7/Ex11_7.sce b/3776/CH11/EX11.7/Ex11_7.sce new file mode 100644 index 000000000..a265e2104 --- /dev/null +++ b/3776/CH11/EX11.7/Ex11_7.sce @@ -0,0 +1,20 @@ +clear +//Given +// +L = 15 //ft - The length of the each rod +p = 200 //kips The concentric load applied +r_min = 2.10 //in - The radius of gyration +stress_yp = 50 //ksi - the yielding point stress +E = 29*(10**3) //ksi - The youngs modulus +C_c = ((2*(%pi**2)*E/stress_yp)**0.5) //Slenderness ratio L/R +C_s = L*12/r_min //Slenderness ratio L/R present situation +if C_s <C_c then + printf("a)The following approch is solvable") +else + printf("The caliculation is not possible") + end +F_S = 5.0/3 +3*C_s/(8*C_c) -(3*C_s**3)/(8*C_c**3) //Safety factor +Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable strees +a = p/Stress_all //in2 the alloawble area of the beam +printf("\n The allowable stress in this case is %0.2f kips",Stress_all) +printf("\n This stress requires %0.2f in2",a) diff --git a/3776/CH11/EX11.8/Ex11_8.sce b/3776/CH11/EX11.8/Ex11_8.sce new file mode 100644 index 000000000..84736d445 --- /dev/null +++ b/3776/CH11/EX11.8/Ex11_8.sce @@ -0,0 +1,19 @@ +clear +//Given +// +L = 15.0 //ft - The length of the each rod +A = 46.7 //in2 - The length of the crossection +r_min = 4 //in - The radius of gyration +stress_yp = 36.0 //ksi - the yielding point stress +E = 29*(10**3) //ksi - The youngs modulus +lamda = L*12*((stress_yp/E)**0.5)/(4*(%pi)) //column slenderness ratio +if lamda<1.5 then + printf("The following approach is right") +else + printf("The following approach is wrong") + end +stress_cr = (0.658**(lamda**2))*stress_yp //ksi - The critical stress +P_n = stress_cr*A //kips //Nominal compressive strength +o = 0.85 //Resistance factor +p_u = o*P_n //kips ,column design compressive strength +printf("\n column design compressive strength %0.3f kips",p_u) diff --git a/3776/CH11/EX11.9/Ex11_9.sce b/3776/CH11/EX11.9/Ex11_9.sce new file mode 100644 index 000000000..98dcadcc9 --- /dev/null +++ b/3776/CH11/EX11.9/Ex11_9.sce @@ -0,0 +1,36 @@ +clear +//Given +//FOR FLANGS +l = 5 //in - The length of the flang +b = 5 //in - Teh width of the flang +t = 0.312 //in - the thickness of the flang +L = 20 //in - Length of the beam, Extracted from AISC manuals +A = 4.563 //in2 - The area of crossection of the beam +r = 1.188 //in - radius of the gyration, Extracted from AISC manuals +//b/t- value of the flang +k = (5 -t)/(2*t) //b/t ratio +//AISC, lets check maximum allowable stress for slang +Stressf_all = 23.1 - 0.79*k //ksi The maximum allowable stress in case of flang,AISC + +//web width thickness ratio +k_2 = (5 -2*t)/(t) +if k_2<16 then + Stressw_all = 19 //ksi - The allowable stress in case of web width + end +//a) Overall buckling investment +k_31 = L/r //slenderness ratio +Stressb_all = 20.2 - 0.126*k_31//ksi The maximum allowable stress in case of Buckling,AISC +p_allow = A*Stressf_all //kips The allowable concentric load + +//b) Overall buckling investmen +L_2 = 60 //in +k_3 = L_2/r //slenderness ratio +Stressb_all_2 = 20.2 - 0.126*k_3//ksi The maximum allowable stress in case of Buckling,AISC +p_allow_2 = A*Stressb_all_2 //kips The allowable concentric load + +printf("\n The maximum allowable stress in case of web width %0.2f ksi",Stressw_all) +printf("\n The maximum allowable stress in case of flang %0.2f ksi",Stressf_all) +printf("\n a) The maximum allowable load in case of Buckling %0.2f kips",p_allow) +printf("\n b) The maximum allowable load in case of Buckling %0.2f kips",p_allow_2) +printf("\n small variation due to rounding off errors") + |