diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3774/CH7/EX7.9/Ex7_9.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3774/CH7/EX7.9/Ex7_9.sce')
-rw-r--r-- | 3774/CH7/EX7.9/Ex7_9.sce | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/3774/CH7/EX7.9/Ex7_9.sce b/3774/CH7/EX7.9/Ex7_9.sce new file mode 100644 index 000000000..c800ac040 --- /dev/null +++ b/3774/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,83 @@ +// exa 7.9 Pg 209 +clc;clear;close; + +// Given Data +d=36;// mm +P=15;// kW +N=720;// rpm +//Tmax=1.25*Tm +sigma_yt=245;// MPa (for C20 steel) +n=3;// factor of safety +sigma=82;// MPa (Design tensile stress) + +tau=0.577*sigma;// MPa (shear stress) +sigma_u=200;// MPa (for FG 200 cast Iron) +n2=5;// factor of safety (for FG 200 cast Iron) +tau2=20;// MPa shear stress (for FG 200 cast Iron) + +// Max. torque transmitted +//P=2*%pi*N*Tm/(60*10**3) +Tm=P/(2*%pi*N/(60*10**3))*1000;// N.mm +Tmax=1.25*Tm;// N.mm +printf('\n Maximum transmitted torque = %.f N.mm',Tmax) + +// Hub diameter +tau_h=20;// MPa (permissible shear stress in hub) +//Tmax=(%pi/16)*(d1**4-d**4)/d1*tau_h ...eqn(1) +d1=2*d;//mm (empirically) +tau_h=Tmax*1000/((%pi/16)*(d1**4-d**4)/d1);// MPa +t1=(d1-d)/2;// mm (thickness of hub) +printf('\n Hub diameter = %.f mm',d1) +printf('\n Thickness of hub = %.f mm',t1) +d4=d+t1;// mm +printf('\n Diameter of recess in flanges = %.f mm',d4) +d3=4*d;//mm +printf('\n Outside diameter of protecting flange = %.f mm',d3) + +//Hub length +b=d/4;// mm (width of key) +l=1.5*d;// mm (length of key) +printf('\n width of key = %.1f mm.',b) +printf('\n length of key = %.f mm.',l) +t=b;// mm (thickness for square key) +printf('\n thickness for square key = %.f mm',t) +printf('\n Hub length = %.f mm',l) + +//Number of bolts +n=ceil(4*d/150+3);// no. of bolts +printf('\n Number of bolts = %.2f.',n) + +// Bolt diameter +r2=1.5*d;// mm +F=Tmax/r2/n;//N +//(%pi/4)*db**2*tau_b=F +db=sqrt(F/((%pi/4)*tau));// mm +printf('\n Bolt diameter = %.2f mm. Use db=6 mm for design purpose',db) +db=6;// mm (adopted for design) +bolt_dia=db;//mm + +// Flange thickness +t2=0.5*t1+6;// mm (empirically) +printf('\n Flange thickness = %.1f mm. Use t=20 mm',t2) +//F=n*db*t2*sigma_c +sigma_ci=F/n/db/t2;// MPa +//2*%pi*d1**2*tau*t2/4=Tmax +tau=Tmax/(2*%pi*d1**2*t2/4);// MPa +printf('\n permissible bearing stress in flange = %.2f MPa < 40 MPa',sigma_ci) +printf('\n shearing of the flange at the junction with hub = %.2f MPa < 20 MPa.',tau) +printf(' Values are acceptable.') + +// Check for crushing of bolt +//n*db*t2*sigma_cb*d2/2=Tmax +d2=d1+d;// mm +db=bolt_dia;//mm +sigma_cb=Tmax/(n*db*t2*d2/2);// MPa +printf('\n permissible crushing strength of bolts = %.2f MPa < 82 MPa.',sigma_cb) +printf(' Hence design is safe.') +// Thickness of protecting flange +t3=0.5*t2;// mm +printf('\n Thickness of protecting flange = %.f mm', t3) +// Hub overlap +ho=3;// mm (min) +printf('\n Hub overlap = %.f mm (min)',ho) + |