diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3774/CH4 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3774/CH4')
-rw-r--r-- | 3774/CH4/EX4.1/Ex4_1.sce | 34 | ||||
-rw-r--r-- | 3774/CH4/EX4.10/Ex4_10.sce | 26 | ||||
-rw-r--r-- | 3774/CH4/EX4.11/Ex4_11.sce | 38 | ||||
-rw-r--r-- | 3774/CH4/EX4.12/Ex4_12.sce | 28 | ||||
-rw-r--r-- | 3774/CH4/EX4.14/Ex4_14.sce | 14 | ||||
-rw-r--r-- | 3774/CH4/EX4.16/Ex4_16.sce | 28 | ||||
-rw-r--r-- | 3774/CH4/EX4.18/Ex4_18.sce | 25 | ||||
-rw-r--r-- | 3774/CH4/EX4.19/Ex4_19.sce | 19 | ||||
-rw-r--r-- | 3774/CH4/EX4.2/Ex4_2.sce | 36 | ||||
-rw-r--r-- | 3774/CH4/EX4.20/Ex4_20.sce | 34 | ||||
-rw-r--r-- | 3774/CH4/EX4.21/Ex4_21.sce | 23 | ||||
-rw-r--r-- | 3774/CH4/EX4.3/Ex4_3.sce | 25 | ||||
-rw-r--r-- | 3774/CH4/EX4.4/Ex4_4.sce | 33 | ||||
-rw-r--r-- | 3774/CH4/EX4.5/Ex4_5.sce | 22 | ||||
-rw-r--r-- | 3774/CH4/EX4.6/Ex4_6.sce | 42 | ||||
-rw-r--r-- | 3774/CH4/EX4.7/Ex4_7.sce | 41 | ||||
-rw-r--r-- | 3774/CH4/EX4.8/Ex4_8.sce | 30 | ||||
-rw-r--r-- | 3774/CH4/EX4.9/Ex4_9.sce | 41 |
18 files changed, 539 insertions, 0 deletions
diff --git a/3774/CH4/EX4.1/Ex4_1.sce b/3774/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..e68f24ff1 --- /dev/null +++ b/3774/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,34 @@ +// exa 4.1 Pg 102 +clc;clear;close; +P=6;// kN + +//dimensions of plate +r=5;//mm +d=40;//mm +D=50;//mm +d0=10;//mm +w=40;//mm +Sut=200;//MPa +n=2.5;// factor of safety + +//Fillet - +rBYd=r/d; +DBYd=D/d; +Kt=1.75;// factor +printf('for stepped plate under tension, Kt=%.2f for r/d = %.3f & D/d = %.2f ',Kt,rBYd,DBYd) +t=poly(0,'t') +sigma_max = Kt*P/t;// N per mm sq. + +// Hole - +d0BYw=d0/w; +Kt=2.42;// factor +printf('\n for finite width plate under tension with a hole, Kt=%.2f for d0/w = %.2f',Kt,d0BYw) +sigma_max_into_t = Kt*P/(w-d0);//N/mm sq. + +//Design stress +sigma_d = Sut/n;// MPa +//putting sigma_max=sigma_d +t=sigma_max_into_t/sigma_d*1000;// mm +printf('\n Thickness of plate = %.2f mm or %.f mm',t,t) + + diff --git a/3774/CH4/EX4.10/Ex4_10.sce b/3774/CH4/EX4.10/Ex4_10.sce new file mode 100644 index 000000000..d5f0fb62d --- /dev/null +++ b/3774/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,26 @@ +// exa 4.10 Pg 116 +clc;clear;close; + +// Given Data +Sut=600;//MPa +Se=280;//MPa +sigma_x_min=50;// MPa +sigma_x_max=100;// MPa +sigma_y_min=20;// MPa +sigma_y_max=70;// MPa + +sigma_xm=(sigma_x_max+sigma_x_min)/2;// MPa +sigma_xa=(sigma_x_max-sigma_x_min)/2;// MPa +sigma_ym=(sigma_y_max+sigma_y_min)/2;// MPa +sigma_ya=(sigma_y_max-sigma_y_min)/2;// MPa + +// distortion energy theory - +sigma_m=sqrt(sigma_xm**2+sigma_ym**2-sigma_xm*sigma_ym);// MPa +sigma_a=sqrt(sigma_xa**2+sigma_ya**2-sigma_xa*sigma_ya);// MPa +theta=atand(sigma_a/sigma_m);// degree +// Sm/Sut+Sa/Se=1 where Sa=Sm*tan(theta) +Sm=1/(1/Sut+tand(theta)/Se);// MPa +Sa=tand(theta)*Sm;// MPa +n=Sa/sigma_a;// factor of safety + +printf('\n factor of safety, n = %.2f',n) diff --git a/3774/CH4/EX4.11/Ex4_11.sce b/3774/CH4/EX4.11/Ex4_11.sce new file mode 100644 index 000000000..7319081d3 --- /dev/null +++ b/3774/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,38 @@ +// exa 4.11 Pg 117 +clc;clear;close; + +// Given Data +Sut=600;//MPa +Syt=400;//MPa +Se=200;//MPa +Mmin=200;// N.m +Mmax=500;// N.m +Tmin=60;// N.m +Tmax=180;// N.m +n=2;// factor of safety + +Mm=(Mmax+Mmin)/2;// N.mm +Ma=(Mmax-Mmin)/2;// N.mm +Tm=(Tmax+Tmin)/2;// N.mm +Ta=(Tmax-Tmin)/2;// N.mm +// sigma_xm=32*Mm/%pi/d**3 +sigma_xm_into_d_cube=(32*Mm*1000)/%pi; +// sigma_xa=32*Ma/%pi/d**3 +sigma_xa_into_d_cube=(32*Ma*1000)/%pi; +//Txym=16*Tm/%pi/d**3 +Txym_into_d_cube=16*Tm*1000/%pi; +//Txya=16*Ta/%pi/d**3 +Txya_into_d_cube=16*Ta*1000/%pi; +// sigma_m=sqrt(sigma_xm**2+3*Txym**2) +sigma_m_dash=sqrt(sigma_xm_into_d_cube**2+3*Txym_into_d_cube**2);// taken sigma_m_dash = sigma_m*d**(-3) for calculation +// sigma_a=sqrt(sigma_xa**2+3*Txya**2) +sigma_a_dash=sqrt(sigma_xa_into_d_cube**2+3*Txya_into_d_cube**2);// taken sigma_a_dash = sigma_a*d**(-3) for calculation +//tan(theta) = sigma_a/sigma_m +theta = atan(sigma_a_dash/sigma_m_dash);// radian +//Sm/Sut+Sa/Se= 1 where Sa/Sm=0.4348 +Sm= 1/(1/Sut+0.4348/Se);// MPa +Sa=0.4348 * Sm;// MPa +//sigma_a=Sa/n +d=(Sa/n/sigma_a_dash)**(1/3)*1000;// mm +printf('\n diameter of shaft, d = %.2f mm',d) +// Note - Ans in the textbook is wrong. diff --git a/3774/CH4/EX4.12/Ex4_12.sce b/3774/CH4/EX4.12/Ex4_12.sce new file mode 100644 index 000000000..9075270f0 --- /dev/null +++ b/3774/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,28 @@ +// exa 4.12 Pg 119 +clc;clear;close; + +// Given Data +Sut=620;//MPa +Syt=380;//MPa +R=90/100;// Reliability +n=2.5;// factor of safety +Tmin=-200;// N.m +Tmax=400;// N.m + +Se_dash=0.5*Sut;//MPa +// for ground shaft +ka=0.92;// surface finish factor +kb=0.85;// size factor (assuming t<50 mm) +kc=0.897;// reliability factor +kd=1;// temperature factor +ke=0.577;// load factor +Ses=ka*kb*kc*kd*ke*Se_dash;// MPa( Endurance limit) +Sys=ke*Syt;// MPa +Tm=(Tmax+Tmin)/2;// N.mm +Ta=(Tmax-Tmin)/2;// N.mm +theta=atan(Ta/Tm);//radian +Sas=Ses;// MPa +Sms=Sas/3;// MPa +//Tda=Sas/n=16*Ta/%pi/d**3 +d=(16*Ta*1000/%pi/(Sas/n))**(1/3);// mm +printf('\n diameter of shaft, d = %.2f mm or %d mm',d, ceil(d)) diff --git a/3774/CH4/EX4.14/Ex4_14.sce b/3774/CH4/EX4.14/Ex4_14.sce new file mode 100644 index 000000000..0b811333b --- /dev/null +++ b/3774/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,14 @@ +// exa 4.14 Pg 121 +clc;clear;close; + +// Given Data +sigma_max=300;// MPa +sigma_min=-150;// MPa +n=1.5;// factor of safety + + +sigma_m=(sigma_max+sigma_min)/2;// MPa +sigma_a=(sigma_max-sigma_min)/2;// MPa +// Goodman failure line - sigma_m/Sut+sigma_a/Se=1/n +Sut=(sigma_m+sigma_a/(0.5))*n ;// putted Se=0.5*Sut +printf('\n Minimum required ultimate strength, Sut = %.1f MPa',Sut) diff --git a/3774/CH4/EX4.16/Ex4_16.sce b/3774/CH4/EX4.16/Ex4_16.sce new file mode 100644 index 000000000..a0b425113 --- /dev/null +++ b/3774/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,28 @@ +// exa 4.16 Pg 122 +clc;clear;close; + +// Given Data +Pmin=-15;// kN +Pmax=25;// kN +Se_dash=360;// MPa +Sy=400;// MPa +Ki=1.25;// impact factor +n=2.25;// factor of safety +ka=0.88;// surface finish factor +Kt=2.25;// stress concentration factor +Pm=(Pmax+Pmin)/2;// kN +Pa=(Pmax-Pmin)/2;// kN +q=0.8;// sensitivity factor + +// sigma_m=4*Pm/%pi/d**2 +sigma_m_into_d_sq = 4*Pm*1000/%pi; +sigma_a_into_d_sq = 4*Pa*1000/%pi; +Kf=1+q*(Kt-1);// fatigue strength factor +kf=1/Kf ;// fatigue strength reduction factor +kb=0.85;// size factor +ke=0.9;//load factor +ki=1/Ki;// reverse impact factor +Se=ka*kb*ke*kf*ki*Se_dash;// MPa +//soderburg failure equation - sigma_m/Sy+sigma_a/Se=1/n +d=sqrt((sigma_m_into_d_sq/Sy+sigma_a_into_d_sq/Se)*n) +printf('\n Size of piston rod, d = %.f mm',d) diff --git a/3774/CH4/EX4.18/Ex4_18.sce b/3774/CH4/EX4.18/Ex4_18.sce new file mode 100644 index 000000000..1c87c3fc5 --- /dev/null +++ b/3774/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,25 @@ +// exa 4.18 Pg 123 +clc;clear;close; + +// Given Data +Pmin=-300;// kN +Pmax=700;// kN +Se_dash=280;// MPa +Sy=350;// MPa +Kf=1.8;//fatigue strength factor +n=2;// factor of safety + +Pm=(Pmax+Pmin)/2;// kN +Pa=(Pmax-Pmin)/2;// kN +// sigma_m=4*Pm/%pi/d**2 +sigma_m_into_d_sq = 4*Pm*1000/%pi; +sigma_a_into_d_sq = 4*Pa*1000/%pi; +kf=1/Kf ;// fatigue strength reduction factor +kb=0.85;// size factor +ke=0.9;//load factor +ka=0.93;// surface finish factor +Se=ka*kb*ke*kf*Se_dash;// MPa +//Goodman failure equation - sigma_m/Sy+sigma_a/Se=1/n +d=sqrt((sigma_m_into_d_sq/Sy+sigma_a_into_d_sq/Se)*2.25) +printf('\n Suitable diameter of rod, d = %.f mm',d) +// Note - Ans in the textbook is wrong. diff --git a/3774/CH4/EX4.19/Ex4_19.sce b/3774/CH4/EX4.19/Ex4_19.sce new file mode 100644 index 000000000..0dcbcc259 --- /dev/null +++ b/3774/CH4/EX4.19/Ex4_19.sce @@ -0,0 +1,19 @@ +// exa 4.19 Pg 124 +clc;clear;close; + +// Given Data +w=110;// mm +Pmin=98.1;// kN +Pmax=250;// kN +Se=225;// N/mm.sq +Sy=300;// N/mm.sq +n=1.5;// factor of safety + +Pm=(Pmax+Pmin)/2;// kN +Pa=(Pmax-Pmin)/2;// kN +// sigma_m=Pm/w/t +sigma_m_into_t = Pm/w; +sigma_a_into_t = Pa/w; +//Soderburg failure equation - sigma_m/Sy+sigma_a/Se=1/n +d=(sigma_m_into_t/Sy+sigma_a_into_t/Se)*n*1000;// mm +printf('\n thickness of plate, t = %.1f mm',d) diff --git a/3774/CH4/EX4.2/Ex4_2.sce b/3774/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..0660587a9 --- /dev/null +++ b/3774/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,36 @@ +// exa 4.2 Pg 104 +clc;clear;close; + +// Given Data +rBYd=0.1; +DBYd=1.2; +P=3;// kN +Syt=300;//MPa +n=3;// factor of safety +//dimensions of plate +l1=400;//mm +l2=300;//mm +l3=400;//mm + + +sigma_d=Syt/n;// MPa +Kt=1.65;// factor for circular fillet radius member +Rp=P/2;//kN (bearing reaction due to symmetry) +Mf=Rp*l1;// kN.mm (bending moment at fillet) +Mc=P*(l1+l2+l3)/4;// kN.mm (bending moment at centre) + +//Fillet +//sigma_max=Kt*32*Mf/(%pi*d**3) +sigma_max_into_d_cube_1 = Kt*32*Mf*1000/%pi + + +//Centre +//sigma_max=32*Mc/(%pi*d**3) +sigma_max_into_d_cube_2 = Kt*32*Mf*1000/%pi +sigma_max_into_d_cube=max(sigma_max_into_d_cube_1,sigma_max_into_d_cube_2);// (getting max) + +//putting sigma_max=sigma_d +t=(sigma_max_into_d_cube/sigma_d)**(1/3);// mm +printf('\n Diameter of axle = %.1f mm',t) + + diff --git a/3774/CH4/EX4.20/Ex4_20.sce b/3774/CH4/EX4.20/Ex4_20.sce new file mode 100644 index 000000000..cacd208e1 --- /dev/null +++ b/3774/CH4/EX4.20/Ex4_20.sce @@ -0,0 +1,34 @@ +// exa 4.20 Pg 124 +clc;clear;close; + +// Given Data +Mmin=200;// kN.mm +Mmax=600;// kN.mm +Tmin=60;// kN +Tmax=180;// kN +Su=550;// MPa +Sy=400;// MPa +Se=0.5*Su;// MPa +n=1.5;// factor of safety +Ktb=1.5;// stress concentration factor in blending +Kts=1.2;// stress concentration factor in torsion + +Mm=(Mmax+Mmin)/2;// kN.mm +Ma=(Mmax-Mmin)/2;// kN.mm + +//sigma_xm=32*Mm/%pi/d**3 +sigma_xm_into_d_cube=32*Mm/%pi; +//sigma_xa=32*Ma/%pi/d**3 +sigma_xa_into_d_cube=32*Ma/%pi; +Tm=(Tmax+Tmin)/2;// kN.mm +Ta=(Tmax-Tmin)/2;// kN.mm +Txym_into_d_cube=16*Tm/%pi; +Txya_into_d_cube=16*Ta/%pi; +// using distortion energy theory +// sigma_m=sqrt(sigma_xm**2+3*Txym**2) +sigma_m_into_d_cube=sqrt(sigma_xm_into_d_cube**2+3*Txym_into_d_cube**2); +// sigma_a=sqrt((Ktb*sigma_xa)**2+3*(Kts*Txym)**2) +sigma_a_into_d_cube=sqrt((Ktb*sigma_xa_into_d_cube)**2+3*(Kts*Txya_into_d_cube)**2); +// Sodeburg equation - sigma_m + (Su/Se)*sigma_a=Sy/n +d=((sigma_m_into_d_cube + (Su/Se)*sigma_a_into_d_cube)*1000/(Sy/n))**(1/3) +printf('\n shaft size, d = %.f mm',d) diff --git a/3774/CH4/EX4.21/Ex4_21.sce b/3774/CH4/EX4.21/Ex4_21.sce new file mode 100644 index 000000000..fcf97e794 --- /dev/null +++ b/3774/CH4/EX4.21/Ex4_21.sce @@ -0,0 +1,23 @@ +// exa 4.21 Pg 126 +clc;clear;close; + +// Given Data +// Hole - +d=25;//mm +w=150;//mm +Kt=2.56;// stress concentration factor +P=50;// kN +sigma_max=100;// N/mm.sq +t=Kt*P*1000/(w-d)/sigma_max;// mm +printf('Calculating for hole - \n thickness is : %.2f mm',t) + +// Notch - +d=30;//mm +w=120;//mm +w=150;//mm +Kt=2.3;// stress concentration factor +P=50;// kN +sigma_max=100;// N/mm.sq +t=Kt*P*1000/(w-d)/sigma_max;// mm +printf('\n Calculating for notch - \n thickness is : %.2f mm',t) +disp('Suggestion, Adopt t = 11 mm') diff --git a/3774/CH4/EX4.3/Ex4_3.sce b/3774/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..9ebd65026 --- /dev/null +++ b/3774/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,25 @@ +// exa 4.3 Pg 105 +clc;clear;close; + +// Given Data +Sut=440;//MPa +d=25;//mm +R=95/100;// reliability +Kt=1.8;// stress concentration factor +q=0.86;// sensitivity factor + +Se_dash = 0.5*Sut;// MPa + +// for machined surface +ka=0.82;// surface finish factor +kb=0.85;// size factor +kc=0.868;// reliability factor +kd=1;// temperature factor +ke=0.577;// load factor + +Kf=1+q*(Kt-1);// fatigue strength factor +kf=1/Kf ;// fatigue strength reduction factor +Se=ka*kb*kc*kd*ke*kf*Se_dash;// (MPa) Endurance limit +printf('\n Endurance limit = %.2f MPa',Se) + + diff --git a/3774/CH4/EX4.4/Ex4_4.sce b/3774/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..26b769886 --- /dev/null +++ b/3774/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,33 @@ +// exa 4.4 Pg 105 +clc;clear;close; + +// Given Data +Sut=440;//MPa +w=60;//mm +d=12;// mm +P=20;// kN +q=0.8;// sensitivity factor +R=90/100;// reliability +n=2;// factor of safety + +Kt=2.52;// stress concentration factor +Se_dash = 0.5*Sut;// MPa +// for hot rollednormalized condition +ka=0.67;// surface finish factor +kb=0.85;// size factor (assuming t<50 mm) +kc=0.897;// reliability factor +kd=1;// temperature factor +ke=0.9;// load factor +dBYw=d/w; //(for circular hole) + +Kf=1+q*(Kt-1);// fatigue strength factor +kf=1/Kf ;// fatigue strength reduction factor +Se=ka*kb*kc*kd*ke*kf*Se_dash;// (MPa) Endurance limit +sigma_d=Se/n;// MPa (design stress) +// sigma_max=P/(w-d)/t +sigma_max_into_t = P*1000/(w-d); +// putting sigma_max=sigma_d +t=sigma_max_into_t/sigma_d;// mm +printf('\n Thickness of plate = %.2f mm or 20 mm',t) + + diff --git a/3774/CH4/EX4.5/Ex4_5.sce b/3774/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..91dfd1de8 --- /dev/null +++ b/3774/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,22 @@ +// exa 4.5 Pg 107 +clc;clear;close; + +// Given Data +Sut=650;//MPa +N=10**5;// cycles +Se_dash = 0.5*Sut;// MPa +of=5;// unit +ob=6;//unit +bf=ob-of;// unit +be=3;//unit + +// calculating endurance section wise +OE=log10(Se_dash); +OA=log10(0.9*Sut); +AE=OA-OE; +//log10_Sf=OD=OE+ED=OE+FC +log10_Sf=OE+(bf/be)*AE; +Sf=10**log10_Sf; // (MPa) Endurance +printf('\n Endurance of specimen = %.2f MPa',Sf) + + diff --git a/3774/CH4/EX4.6/Ex4_6.sce b/3774/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..44b67139b --- /dev/null +++ b/3774/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,42 @@ +// exa 4.6 Pg 108 +clc;clear;close; + +// Given Data +Sut=540;//MPa +N=10**4;// cycles +q=0.85;// sensitivity factor +R=90/100;// reliability +P=1500;// N +l=160;// mm + +Se_dash = 0.5*Sut;// MPa +// for cold drawn steel +ka=0.79;// surface finish factor +kb=0.85;// size factor (assuming t<50 mm) +kc=0.897;// reliability factor +kd=1;// temperature factor +ke=1;// load factor + +Kt=1.33;// under bending + +Kf=1+q*(Kt-1);// fatigue strength factor +kf=1/Kf ;// fatigue strength reduction factor +Se=ka*kb*kc*kd*ke*kf*Se_dash;// MPa( Endurance limit) + +of=4;// unit +ob=6;//unit +bf=ob-of;// unit +be=3;//unit + +// calculating endurance section wise +OE=log10(Se); +OA=log10(0.9*Sut); +AE=OA-OE; +//log10_Sf=OD=OE+ED=OE+FC +log10_Sf=OE+(bf/be)*AE; +Sf=10**log10_Sf; // (MPa) Endurance + +MB=P*l;// N.mm +// 32*MB/%pi/d**3 = Sf +d=(32*MB/%pi/Sf)**(1/3) +printf('\n diameter of beam %.f mm',d) diff --git a/3774/CH4/EX4.7/Ex4_7.sce b/3774/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..03ead01d3 --- /dev/null +++ b/3774/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,41 @@ +// exa 4.7 Pg 110 +clc;clear;close; + +// Given Data +Sut=600;//MPa +Syt=380;//MPa +q=0.9;// sensitivity factor +R=90/100;// reliability +n=2;// factor of safety +Pmin=-100;// N +Pmax=200;// N +l=150;// mm + +Se_dash = 0.5*Sut;// MPa +// for cold drawn steel +ka=0.76;// surface finish factor +kb=0.85;// size factor (assuming t<50 mm) +kc=0.897;// reliability factor +kd=1;// temperature factor +ke=1;// load factor + +Kt=1.4;// under bending + +Kf=1+q*(Kt-1);// fatigue strength factor +kf=1/Kf ;// fatigue strength reduction factor +Se=ka*kb*kc*kd*ke*kf*Se_dash;// MPa( Endurance limit) +Mmax=Pmax*l;// N.mm +Mmin=Pmin*l;// N.mm +Mm=(Mmax+Mmin)/2;// N.mm +Ma=(Mmax-Mmin)/2;// N.mm +theta=atand(Ma/Mm);// degree + +//equation of Goodman - sigma_m/Sut+sigma_a/Se=1 +//here sigma_a/sigma_m=3 +sigma_m=1/(1/Sut+3/Se);//MPa +sigma_a=3*sigma_m;// MPa + +sigma_da=sigma_a/n;// MPa +//sigma_da=32*Ma/%pi/d**3 +d=(32*Ma/%pi/sigma_da)**(1/3);// mm +printf('\n diameter d at fillet cross section = %.f mm',d) diff --git a/3774/CH4/EX4.8/Ex4_8.sce b/3774/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..b587914e6 --- /dev/null +++ b/3774/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,30 @@ +// exa 4.8 Pg 112 +clc;clear;close; + +// Given Data +Sut=500;//MPa +Syt=300;//MPa +R=90/100;// reliability +n=2;// factor of safety +Tmin=-200;// N.m +Tmax=500;// N.m + +Se_dash = 0.5*Sut;// MPa +// for cold drawn steel +ka=0.80;// surface finish factor +kb=0.85;// size factor (assuming t<50 mm) +kc=0.897;// reliability factor +kd=1;// temperature factor +ke=0.577;// load factor + +Ses=ka*kb*kc*kd*ke*Se_dash;// MPa( Endurance limit) +Sys=ke*Syt;// MPa +Tm=(Tmax+Tmin)/2;// N.m +Ta=(Tmax-Tmin)/2;// N.m +theta=atand(Ta/Tm);// degree +Sms=Ses/tand(theta);//MPa +Sas=Ses;//MPa +tau_da=Sas/n;//MPa +//tua_da=16*Ta/%pi/d**3 +d=(16*Ta*1000/%pi/tau_da)**(1/3);//mm +printf('\n diameter of shaft = %.f mm',d) diff --git a/3774/CH4/EX4.9/Ex4_9.sce b/3774/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..c2640f651 --- /dev/null +++ b/3774/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,41 @@ +// exa 4.9 Pg 113 +clc;clear;close; + +// Given Data +Sut=860;//MPa +Syt=690;//MPa +Pmin=60;// N +Pmax=120;// N +R=50/100;// reliability +l=500;//mm +d=10;//mm +Se_dash = 0.5*Sut;// MPa +// for machines surface +ka=0.70;// surface finish factor +kb=0.85;// size factor (assuming t<50 mm) +kc=1;// reliability factor +kd=1;// temperature factor +ke=1;// load factor + +Se=ka*kb*kc*kd*ke*Se_dash;// MPa( Endurance limit) +Mmax=Pmax*l;// N.mm +Mmin=Pmin*l;// N.mm +Mm=(Mmax+Mmin)/2;// N.mm +Ma=(Mmax-Mmin)/2;// N.mm +Sm=32*Mm/%pi/d**3;//MPa +sigma_m=Sm;//MPa +Sa=32*Ma/%pi/d**3;//MPa +sigma_a=Sa;//MPa +Sf=Sa*Sut/(Sut-Sm);//MPa + +//calculating section +OB=6;//unit ref. o at 3 +BE=OB-3;//unit +OC=Sf;// MPa +AE=log10(0.9*Sut)-log10(Se);//MPa +AC=log10(0.9*Sut)-log10(Sf);//MPa +CD=BE*AC/AE;// +//log10(N)=3+CD +N=10**(3+CD);// cycle +printf('\n life of the spring, N = %.f cycles',N) +//Note : answer in the textbook is wrong. |