diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3773/CH12 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3773/CH12')
-rw-r--r-- | 3773/CH12/EX12.1/Ex12_1.sce | 38 | ||||
-rw-r--r-- | 3773/CH12/EX12.2/Ex12_2.sce | 32 | ||||
-rw-r--r-- | 3773/CH12/EX12.3/Ex12_3.sce | 21 |
3 files changed, 91 insertions, 0 deletions
diff --git a/3773/CH12/EX12.1/Ex12_1.sce b/3773/CH12/EX12.1/Ex12_1.sce new file mode 100644 index 000000000..d3a61f962 --- /dev/null +++ b/3773/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,38 @@ +//Chapter 12: The Cylindrical Antenna and the Moment Method +//Example 12-12.1 +clc; + +//Variable Initialization +N = 3 //Piecewise sinusoidal dipole modes (unitless) +l = 1/10.0 //Dipole length (lambda) +z11_exact = 0.4935 - 3454*%i //Exact impedance vector(ohm) +z11_apprx = 0.4944 - 3426*%i //Approximate impedance vector(ohm) +z12_exact = 0.4935 + 1753*%i //Exact impedance vector(ohm) +z12_apprx = 0.4945 + 1576*%i //Approximate impedance vector(ohm) +z13_exact = 0.4935 + 129.9*%i //Exact impedance vector(ohm) +z13_apprx = 0.4885 + 132.2*%i //Approximate impedance vector(ohm) + +//Calculations +N2 = N + 1 //Number of equal segments (unitless) +d = l/4 //Length of each segment (lambda) +Rmn = 20*(2*%pi*d)**2 //Real part of elements of Z-matrix, Zmn (VA) +zmat_apprx=([z11_apprx+z13_apprx,z12_apprx;2*z12_apprx,z11_apprx])//matrix(unitless) +vmat = ([0;1]) //Voltage matrix (unitless) +[i1]=linsolve(zmat_apprx,vmat) //Current matrix (unitless) +i1=i1*-1 +i_ratio = i1(2)/i1(1) //Current ratio (unitless) +zin = vmat(2)/i1(2) //Input impedance (ohm) + + +zmat_exact =([z11_exact+z13_exact,z12_exact;2*z12_exact,z11_exact]) +[i1_e] = linsolve(zmat_exact,vmat) //Current matrix (unitless) +i1_e=i1_e*-1 +i_ratio_exact = i1_e(2)/i1_e(1) //Current ratio (unitless) +zin_exact = vmat(2)/i1_e(2) //Input impedance (ohm) + + +//Result +mprintf("The current ratio is %.2f+%.4f j",real(i_ratio),imag(i_ratio)) +mprintf("\nThis is nearly equal to 1.9 indicating a nearly triangular current distribution") +mprintf("\nThe input impedance is %.3f%.3fj ohm using approximate values", real(zin),imag(zin)) +mprintf("\nThe input impedance is %.3f%.3fj ohm using exact values", real(zin_exact),imag(zin_exact)) diff --git a/3773/CH12/EX12.2/Ex12_2.sce b/3773/CH12/EX12.2/Ex12_2.sce new file mode 100644 index 000000000..ab3113674 --- /dev/null +++ b/3773/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,32 @@ +//Chapter 12: The Cylindrical Antenna and the Moment Method +//Example 12-12.2 +clc; + +//Variable Initialization +z_load = 2.083 + 1605*%i //Conjugate matched load (ohm) +e0 = 1.0 //Electric field magnitude (unitless) +l = 1/10.0 //Length of dipole (lambda) +ima = 0+1*%i //Imaginary number + +z11_exact = 0.4935 - 3454*%i //Exact impedance vector(ohm) +z11_apprx = 0.4944 - 3426*%i //Approximate impedance vector(ohm) +z12_exact = 0.4935 + 1753*%i //Exact impedance vector(ohm) +z12_apprx = 0.4945 + 1576*%i //Approximate impedance vector(ohm) +z13_exact = 0.4935 + 129.9*%i //Exact impedance vector(ohm) +z13_apprx = 0.4885 + 132.2*%i //Approximate impedance vector(ohm) + +//Calculation +d = l/4 //Length of each segment (lambda) +vm = (2*e0/(2*%pi))*tan(2*%pi*d/2) //Voltage vector (VA) +z22 = z11_exact + z_load //Impedance matrix for loaded dipole (VA) +zmat_exact =([z11_exact+z13_exact,z12_exact;2*z12_exact,z22])//Z(impedance) matrix (unitless) +vmat = ([vm;vm]) //Voltage matrix (unitless) +[i1]= linsolve(zmat_exact,vmat) //Current matrix (unitless) +i1=i1*-1 +i3 = i1(1) //Current vector (unitless) +e_zn = (60*tan(2*%pi*d/2))*ima //Free space electric field (V/m) +e_s = i1(1)*e_zn + i1(2)*e_zn + i3*e_zn //Scattered field (V/m) +sigma = 4*%pi*(abs(e_s)**2)/(abs(e0)**2) //Radar Cross section (lambda**2) + +//Result +mprintf("The radar cross section using exact values of Z matrix is %.4f lambda square",sigma(1)) diff --git a/3773/CH12/EX12.3/Ex12_3.sce b/3773/CH12/EX12.3/Ex12_3.sce new file mode 100644 index 000000000..180c7bee2 --- /dev/null +++ b/3773/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,21 @@ +//Chapter 12: The Cylindrical Antenna and the Moment Method +//Example 12-12.3 +clc; + +//Variable Initialization +z11_exact = 2-1921*%i //Exact impedance vector (ohm) +z12_exact = 1.9971-325.1*%i //Exact impedance vector (ohm) + +z11_apprx = 1.9739-1992*%i //Approximate impedance vector (ohm) +z12_apprx = 1.9739-232.8*%i //Approximate impedance vector (ohm) + +vmat =([1;0]) + +//Calculations +zmat_exact =([z11_apprx,z12_apprx;z12_apprx, z11_apprx]) //Impedance matrix (unitless) +[i1] = linsolve(zmat_exact,vmat) //Current matrix (unitless) +i1=i1*-1 +zin = 1/i1(1) + +//Result +mprintf("The input impedance for order N = 2 is %.3f%.3fi ohm",real(zin),imag(zin)) |