summaryrefslogtreecommitdiff
path: root/3760/CH1/EX1.28/Ex1_28.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3760/CH1/EX1.28/Ex1_28.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3760/CH1/EX1.28/Ex1_28.sce')
-rw-r--r--3760/CH1/EX1.28/Ex1_28.sce51
1 files changed, 51 insertions, 0 deletions
diff --git a/3760/CH1/EX1.28/Ex1_28.sce b/3760/CH1/EX1.28/Ex1_28.sce
new file mode 100644
index 000000000..8202e42a4
--- /dev/null
+++ b/3760/CH1/EX1.28/Ex1_28.sce
@@ -0,0 +1,51 @@
+clc;
+P=10000; // rated power of transformer in VA
+E1=2500; // primary side voltage
+E2=250; // secondary side voltage
+pf=0.8; // power factor
+//initialising the results of open circuit test
+vo=250; // open circuit voltage
+io=0.8; //no load current
+po=50; // open circuit voltage
+// initialising the results of open circuit test
+vsc=60; // short circuit voltage
+isc=3; // short circuit current
+psc=45; // power dissipated in test
+ifl=P/E1; // full load current on primary side
+poh=psc*(ifl/isc)^2; // ohmic losses at full load current
+disp('case a(1)');
+n=(1-(po+(poh/4^2))/(po+(poh/4^2)+(P*pf)/4))*100; // efficiency at 1/4 load
+printf('efficiency at 1/4 load is %f percent\n',n);
+disp('case a(2)');
+n=(1-(po+(poh/2^2))/(po+(poh/2^2)+(P*pf)/2))*100; // efficiency at 1/2 load
+printf('efficiency at 1/2 load is %f percent\n',n);
+disp('case a(3)');
+n=(1-(po+(poh/1^2))/(po+(poh/1^2)+(P*pf)/1))*100; // efficiency at full load
+printf('efficiency at full load is %f percent\n',n);
+disp('case a(4)');
+n=(1-(po+((poh*5^2)/4^2))/(po+((poh*5^2)/4^2)+(P*pf*5)/4))*100; // efficiency at 1*1/4 load
+printf('efficiency at 5/4 load is %f percent\n',n);
+// let maximum efficiency occurs at x times the rated KVA
+// maximum efficiency occurs when core loss becomes equal to ohmic losses
+x=sqrt(po/poh);
+nm=(x*P)/1000; // VA output at maximum
+nmax=(1-(2*po)/(nm*1000*pf+2*po))*100;
+printf('KVA load at which maximum efficiency occurs is %f KVA\n',nm);
+printf('Maximum efficiency is %f percent\n',nmax);
+// from short circuit test
+reh=psc/isc^2; // total resistance referred to h v side
+zeh=vsc/isc; // total impedance referred to h v side
+xeh=sqrt(zeh^2-reh^2); // total leakage reactance referred to h v side
+er=(ifl*reh)/E1; //p u resistance
+ex=(ifl*xeh)/E1; // p u reactance
+vr=(er*pf+ex*sqrt(1-pf^2))*100; // p u voltage regulation
+printf(' p u voltage regulation for lagging power factor is %f percent\n',vr);
+dv=E2*(vr/100); // voltage drop in series impedance
+v2=E2-dv;
+printf('secondary terminal voltage for lagging power factor of 0.8 is %f v\n',v2);
+// voltaage regulation for leading power factor
+vr=(er*pf-ex*sqrt(1-pf^2))*100; // p u voltage regulation
+printf(' p u voltage regulation for leading power factor is %f percent\n',vr);
+dv=E2*(vr/100); // voltage drop in series impedance
+v2=E2-dv;
+printf('secondary terminal voltage for leading power factor of 0.8 is %f v\n',v2);