diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3740/CH8 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3740/CH8')
28 files changed, 296 insertions, 0 deletions
diff --git a/3740/CH8/EX8.1/Ex8_1.sce b/3740/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..749ad4ee1 --- /dev/null +++ b/3740/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.5;//Dimensionless refractive index of glass
+n2=1;//Dimensionless refractive index of air
+Theta_i=60;//Angle of incidence in degrees
+Tan_Sai=sqrt(sind(Theta_i)^2-(n2/n1)^2)/(cosd(Theta_i))//Tan of phase shift in incident and reflected ray
+Sai=atand(Tan_Sai)//phase shift in perpendicular component ofincident and reflected ray in degrees
+delta=atand((n1/n2)^2*Tan_Sai)//phase shift in parallel component of incident and reflected ray in degrees
+
+
+mprintf("\n phase shift in perpendicular component ofincident and reflected ray in degrees Sai= %f",Sai);
+mprintf("\n\n phase shift in parallel component of incident and reflected ray in degrees Delta= %f",delta);
+// the difference in answer is becoause of roundingoff
diff --git a/3740/CH8/EX8.1/Ex_8_1.jpg b/3740/CH8/EX8.1/Ex_8_1.jpg Binary files differnew file mode 100644 index 000000000..792b591dd --- /dev/null +++ b/3740/CH8/EX8.1/Ex_8_1.jpg diff --git a/3740/CH8/EX8.10/Ex8_10.jpg b/3740/CH8/EX8.10/Ex8_10.jpg Binary files differnew file mode 100644 index 000000000..ff97d6339 --- /dev/null +++ b/3740/CH8/EX8.10/Ex8_10.jpg diff --git a/3740/CH8/EX8.10/Ex8_10.sce b/3740/CH8/EX8.10/Ex8_10.sce new file mode 100644 index 000000000..000c5553c --- /dev/null +++ b/3740/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,28 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.10
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case (i)
+Lambda0=850e-9;//Wavelength in m
+L=1e3;//Length of the silica based fiber in m
+DeltaLambda0=50e-9;//Linewidth of the fiber in m
+c=3e8;//Speed of light in m/s
+//Let the term '((d^2)n)/(dLambda0)^2' in m^-2 be denoted by dsquare
+dsquare=3e10;
+
+DeltaT=L*Lambda0*dsquare*DeltaLambda0/c;//Material dispersion for laser in s
+mprintf("\n DeltaT for laser = %.1e s",DeltaT);//The answers vary due to round off error
+
+//given - Case (ii)
+Lambda0=1550e-9;//Wavelength in m
+L=1e3;//Length of the silica based fiber in m
+DeltaLambda0=3e-9;//Linewidth of the fiber in m
+c=3e8;//Speed of light in m/s
+//Let the term '((d^2)n)/(dLambda0)^2' in m^-2 be denoted by dsquare
+dsquare=4.24e9;
+
+DeltaT=L*Lambda0*dsquare*DeltaLambda0/c;//Material dispersion for LED in s
+mprintf("\n DeltaT for LED = %.1e s",DeltaT);
diff --git a/3740/CH8/EX8.11/Ex8_11.jpg b/3740/CH8/EX8.11/Ex8_11.jpg Binary files differnew file mode 100644 index 000000000..78393b545 --- /dev/null +++ b/3740/CH8/EX8.11/Ex8_11.jpg diff --git a/3740/CH8/EX8.11/Ex8_11.sce b/3740/CH8/EX8.11/Ex8_11.sce new file mode 100644 index 000000000..842b5fa6c --- /dev/null +++ b/3740/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,38 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.11
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case(i)
+Lambda0=1e-6;//Wavelength in m
+n=1.45;//Dimensionless Refractive index of the fiber
+p=0.286;//Dimensionless Photoelastic coefficient of the fiber
+Beta=7e-11;//Isothermal compressibility of the fiber in m^2 N^-1
+Tf=1400;//Temperature in K
+k=1.38e-23;//Boltzmann constant in SI Units
+L=1e3;//Length of fiber in m
+
+mprintf("\n For Lambda0 = 1um :");
+AlphaR=8*((%pi)^3)/(3*(Lambda0^4))*(n^8)*(p^2)*Beta*k*Tf;//Absorption coefficient due to Rayleigh scattering in m^-1
+mprintf("\n AlphaR = %.2e m^(-1)",AlphaR);
+
+Loss=-10*log10(exp(-AlphaR*L));
+mprintf("\n Loss = %.2f dB km^(-1)\n",Loss);
+
+
+//given - Case(ii)
+Lambda0=1.55e-6;//Wavelength in m
+n=1.46;//Dimensionless Refractive index of the fiber
+p=0.286;//Dimensionless Photoelastic coefficient of the fiber
+Beta=7e-11;//Isothermal compressibility of the fiber in m^2 N^-1
+Tf=1400;//Temperature in K
+L=1e3;//Length of fiber in m
+
+mprintf("\n For Lambda0 = 1.55um :");
+AlphaR=8*((%pi)^3)/(3*(Lambda0^4))*(n^8)*(p^2)*Beta*k*Tf;//Absorption coefficient due to Rayleigh scattering in m^-1
+mprintf("\n AlphaR = %.2e m^(-1)",AlphaR);//The answers vary due to round off error
+
+Loss=-10*log10(exp(-AlphaR*L));
+mprintf("\n Loss = %.2f dB km^(-1)",Loss);//The answers vary due to round off error
diff --git a/3740/CH8/EX8.12/Ex8_12.jpg b/3740/CH8/EX8.12/Ex8_12.jpg Binary files differnew file mode 100644 index 000000000..8b57374fa --- /dev/null +++ b/3740/CH8/EX8.12/Ex8_12.jpg diff --git a/3740/CH8/EX8.12/Ex8_12.sce b/3740/CH8/EX8.12/Ex8_12.sce new file mode 100644 index 000000000..1976844a9 --- /dev/null +++ b/3740/CH8/EX8.12/Ex8_12.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.12
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n0=1;//Dimensionless refractive index of air
+
+Rf=((n1-n0)/(n1+n0))^2;//Fraction of light reflected at each fiber end
+mprintf("\n Rf = %.4f",Rf);
+
+Tf=(1 - Rf)^2;
+mprintf("\n Tf = %.3f",Tf);
+
+L=-10*log10(Tf);//Corresponding total loss in dB
+mprintf("\n L = %.2f dB",L);
diff --git a/3740/CH8/EX8.13/Ex8_13.jpg b/3740/CH8/EX8.13/Ex8_13.jpg Binary files differnew file mode 100644 index 000000000..400fb7ee9 --- /dev/null +++ b/3740/CH8/EX8.13/Ex8_13.jpg diff --git a/3740/CH8/EX8.13/Ex8_13.sce b/3740/CH8/EX8.13/Ex8_13.sce new file mode 100644 index 000000000..4e4eecd57 --- /dev/null +++ b/3740/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.13
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+//Let the quantity 'D/2a' be 'D'
+D=0.1;//Dimensionless Ratio of lateral displacement to fiber core radius
+
+Tlat=2/%pi*(acos(D) - D*sqrt(1 - D^2));//Transmission losses from misalignment
+mprintf("\n Tlat = %.3f",Tlat);//The answers vary due to round off error
+
+L=-10*log10(Tlat);//Corresponding Transmission loss in dB
+mprintf("\n L = %.2f dB",L);
diff --git a/3740/CH8/EX8.14/Ex8_14.jpg b/3740/CH8/EX8.14/Ex8_14.jpg Binary files differnew file mode 100644 index 000000000..51c3adb4b --- /dev/null +++ b/3740/CH8/EX8.14/Ex8_14.jpg diff --git a/3740/CH8/EX8.14/Ex8_14.sce b/3740/CH8/EX8.14/Ex8_14.sce new file mode 100644 index 000000000..0cac61476 --- /dev/null +++ b/3740/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.14
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+d1=200e-6;//Diameter of core in m
+d2=250e-6;//Diameter of 'core+cladding' in m
+//Let the Diameter of mixing rod be D
+D=3*d2;
+n=7;//Number of input and output fibers in the rod type coupler
+
+//As B is a constant, it will be cancelled from the numerator & the denominator of expression of Lins
+//So the simplified expression for Li becomes:
+Lins=-10*log10((n*%pi*(d1^2)/4)/(%pi*(D^2)/4));//Insertion loss in dB
+mprintf("\n Lins = %.1f dB",Lins);
+
diff --git a/3740/CH8/EX8.2/Ex8_2.jpg b/3740/CH8/EX8.2/Ex8_2.jpg Binary files differnew file mode 100644 index 000000000..30b4147de --- /dev/null +++ b/3740/CH8/EX8.2/Ex8_2.jpg diff --git a/3740/CH8/EX8.2/Ex8_2.sce b/3740/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..389533bd9 --- /dev/null +++ b/3740/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of core
+n2=1.46;//Dimensionless refractive index of cladding
+d=100e-6;//Width of the waveguide in m
+Lambda0=1e-6;//Vacuum wavelength in m
+
+V=%pi*(d/Lambda0)*sqrt((n1^2)-(n2^2));//Dimensionless normalized film thickness
+mprintf("\n V = %.1f",V);
+
+//Let the total number of possible modes be 'N'
+N=2*(1 + floor(2*V/%pi));
+mprintf("\n N = %d",N);
diff --git a/3740/CH8/EX8.3/Ex8_3.jpg b/3740/CH8/EX8.3/Ex8_3.jpg Binary files differnew file mode 100644 index 000000000..6dd1d5e3a --- /dev/null +++ b/3740/CH8/EX8.3/Ex8_3.jpg diff --git a/3740/CH8/EX8.3/Ex8_3.sce b/3740/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..602c05e1b --- /dev/null +++ b/3740/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+Lambda0=1e-6;//Wavelength in m
+
+//For single mode guide, let the core thickness be less than dmax
+dmax=Lambda0/(2*sqrt(n1^2 - n2^2));
+mprintf("\n d < %.2f um",dmax/1e-6);//Dividing by 10^(-6) to convert to um
diff --git a/3740/CH8/EX8.4/Ex8_4.jpg b/3740/CH8/EX8.4/Ex8_4.jpg Binary files differnew file mode 100644 index 000000000..38d655a9c --- /dev/null +++ b/3740/CH8/EX8.4/Ex8_4.jpg diff --git a/3740/CH8/EX8.4/Ex8_4.sce b/3740/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..ab450b7a8 --- /dev/null +++ b/3740/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+n0=1;//Dimensionless refractive index of air
+a=100e-6;//Core radius in m
+Lambda0=900e-9;//Vacuum wavelength in m
+
+V=2*%pi*(a/Lambda0)*sqrt((n1^2)-(n2^2));//Dimensionless normalized film thickness
+mprintf("\n V = %.1f",V);
+
+N=(V^2)/2;//Number of modes of propagation
+mprintf("\n N = %d",N);
diff --git a/3740/CH8/EX8.5/Ex8_5.jpg b/3740/CH8/EX8.5/Ex8_5.jpg Binary files differnew file mode 100644 index 000000000..d0d7cf76e --- /dev/null +++ b/3740/CH8/EX8.5/Ex8_5.jpg diff --git a/3740/CH8/EX8.5/Ex8_5.sce b/3740/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..e957aa04a --- /dev/null +++ b/3740/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,23 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+n0=1;//Dimensionless refractive index of air
+
+Thetac=asind(n2/n1);//critical angle in degrees
+mprintf("\n Thetac = %.1f degrees",Thetac);//The answers vary due to round off error
+
+Delta=(n1-n2)/n1;
+mprintf("\n Delta = %.4f",Delta);//The answers vary due to round off error
+
+NA=n1*sqrt(2*Delta);//Dimensionless Numerical aperture of fiber
+mprintf("\n NA = %.3f",NA);//The answers vary due to round off error
+
+AlphaMax=asind(NA);//Fiber acceptance angle in degrees
+mprintf("\n AlphaMax = %.1f degrees",AlphaMax);//The answers vary due to round off error
diff --git a/3740/CH8/EX8.6/Ex8_6.jpg b/3740/CH8/EX8.6/Ex8_6.jpg Binary files differnew file mode 100644 index 000000000..129dbca35 --- /dev/null +++ b/3740/CH8/EX8.6/Ex8_6.jpg diff --git a/3740/CH8/EX8.6/Ex8_6.sce b/3740/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..4dd2e8136 --- /dev/null +++ b/3740/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,16 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+L=1e3;//Length of fiber in m
+c=3e8;//Speed of light in vacuum in m/s
+
+DeltaTSI=L/c*(n1/n2)*(n1-n2);//Intermodal dispersion in s
+mprintf("\n DeltaTSI = %.2f ns",DeltaTSI/1e-9);//Dividing by 10^(-9) to convert to ns
+//The answers vary due to round off error
diff --git a/3740/CH8/EX8.7/Ex8_7.jpg b/3740/CH8/EX8.7/Ex8_7.jpg Binary files differnew file mode 100644 index 000000000..dfc90e619 --- /dev/null +++ b/3740/CH8/EX8.7/Ex8_7.jpg diff --git a/3740/CH8/EX8.7/Ex8_7.sce b/3740/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..5993b9078 --- /dev/null +++ b/3740/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,19 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+L=1e3;//Length of fiber in m
+c=3e8;//Speed of light in vacuum in m/s
+
+Delta=(n1^2 - n2^2)/(2* n1^2);
+mprintf("\n Delta = %.4f",Delta);
+
+DeltaTGI=L/c*Delta/8;//Intermodal dispersion in s
+mprintf("\n DeltaTGI = %.2e s",DeltaTGI);
+//The answers vary due to round off error
diff --git a/3740/CH8/EX8.8/Ex8_8.jpg b/3740/CH8/EX8.8/Ex8_8.jpg Binary files differnew file mode 100644 index 000000000..e235f6a8e --- /dev/null +++ b/3740/CH8/EX8.8/Ex8_8.jpg diff --git a/3740/CH8/EX8.8/Ex8_8.sce b/3740/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..2396d5986 --- /dev/null +++ b/3740/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,15 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given
+n1=1.48;//Dimensionless refractive index of fiber core
+n2=1.46;//Dimensionless refractive index of fiber cladding
+Lambda0=1.5e-6;//Wavelength in m
+
+//Let the maximum core radius in m for single mode operation be 'amax'
+amax=2.405*Lambda0/(2*%pi*sqrt((n1^2)-(n2^2)));
+mprintf("\n a < %.2f um",amax/1e-6);//Dividing by 10^(-6) to convert into um
diff --git a/3740/CH8/EX8.9/Ex8_9.sce b/3740/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..ac808e425 --- /dev/null +++ b/3740/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,31 @@ +//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
+//Example 8.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+
+//given - Case (i)
+k=1.38e-23//boltzman constant
+Lambda0=1e-6;//Wavelength in m
+n=1.46;//Dimensionless refractive index of core
+p=0.286;//photelastic coefficient
+Beta=7e-11//isothermal compressibility at T_F which is fictive temperature in m^2N^-1
+T_F=1400//fictive temperature in K
+alpha_r=8*(%pi^3)*(n^8)*p^2*Beta*k*T_F/(3*Lambda0^4)//absorption coefficient in per Km
+L=1e3//length in m
+Loss=-10*log10(exp(-alpha_r*L))//loss in dB Km^-1
+mprintf("\n absorption coefficient =%fx10^-4 m^-1\n Loss in dB Km^-1= %f dB Km^-1",alpha_r*1e4,Loss);//multiplication by 1e4 to just represent the answer in proper form
+//The answers vary due to round off error
+
+//given - Case (ii)
+Lambda0=1550e-9;//Wavelength in m
+n=1.46;//Dimensionless refractive index of core
+p=0.286;//photelastic coefficient
+Beta=7e-11//isothermal compressibility at T_F which is fictive temperature in m^2N^-1
+T_F=1400//fictive temperature in K
+alpha_r=8*(%pi^3)*(n^8)*p^2*Beta*k*T_F/(3*Lambda0^4)//absorption coefficient in per Km
+L=1e3//length in m
+Loss=-10*log10(exp(-alpha_r*L))//loss in dB Km^-1
+mprintf("\n absorption coefficient =%fx10^-5 m^-1\n Loss in dB Km^-1= %f dB Km^-1",alpha_r*1e5,Loss);//multiplication by 1e5 to just represent the answer in proper form
+//The answers vary due to round off error
diff --git a/3740/CH8/EX8.9/Ex_8_9.jpg b/3740/CH8/EX8.9/Ex_8_9.jpg Binary files differnew file mode 100644 index 000000000..5026db102 --- /dev/null +++ b/3740/CH8/EX8.9/Ex_8_9.jpg |