summaryrefslogtreecommitdiff
path: root/3733/CH3/EX3.4/Ex3_4.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3733/CH3/EX3.4/Ex3_4.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3733/CH3/EX3.4/Ex3_4.sce')
-rw-r--r--3733/CH3/EX3.4/Ex3_4.sce46
1 files changed, 46 insertions, 0 deletions
diff --git a/3733/CH3/EX3.4/Ex3_4.sce b/3733/CH3/EX3.4/Ex3_4.sce
new file mode 100644
index 000000000..be12d2d8a
--- /dev/null
+++ b/3733/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,46 @@
+// Example 3_4
+clc;funcprot(0);
+//Given data
+L=[60 120 40 10];// Load in MW
+T_1=[6,10];// Time in hours
+T_2=[10,18];// Time in hours
+T_3=[18,24];// Time in hours
+T_4=[0,6];// Time in hours
+Er=1.5;// Rs/kW-hr
+c=2.2;// Cost of input in rupees
+n_th=[35 40 30 20]/100;
+Q=20000;// kJ
+n_thb=40/100;// Thermal efficiency
+n_o=80/100;// Over all efficiency of pump storage plant
+
+// Calculation
+//(a)
+T_p=[0 0 4 4 12 12 18 18 24 24];// Time in hours
+L_p=[0 60 60 120 120 40 40 10 10 130];// Load in MW
+plot(T_p',L_p','b');
+a=gca();
+a.x_ticks.labels=["6 P.M","","","12 P.M","","","6 P.M","","","12 P.M","","","6 P.M"];
+a.x_ticks.locations=[0;2;4;6;8;10;12;14;16;18;20;22;24];
+O=((L(1)*(T_1(2)-T_1(1)))+(L(2)*(T_2(2)-T_2(1)))+(L(3)*(T_3(2)-T_3(1)))+(L(4)*(T_4(2)-T_4(1))))*10^3;// Total energy generated by the thermal plant
+Tc_s=Er*O;// Total cost of selling the power in rupees
+I= (((L(1)*(T_1(2)-T_1(1)))/(n_th(1)))+((L(2)*(T_2(2)-T_2(1)))/(n_th(2)))+((L(3)*(T_3(2)-T_3(1)))/(n_th(3)))+((L(4)*(T_4(2)-T_4(1)))/(n_th(4))))*10^3;// Total input to the thermal plant in kWh
+Tc_i=c*(1/(Q))*(I*3600);// Total cost of input energy in rupees
+Nr_1=Tc_s-Tc_i;// Net revenue earned in Rs./day
+
+//(b)
+function[Y]=baseload(x)
+ Y(1)=((((x(1)-L(3))*(T_3(2)-T_3(1)))+((x(1)-L(4))*(T_4(2)-T_4(1)))+((x(1)-L(1))*(T_1(2)-T_1(1))))*(n_o))-((L(2)-x(1))*(T_2(2)-T_2(1)));
+ endfunction
+x=[10];
+z=fsolve(x,baseload);
+x=(z(1));// The capacity of the thermal plant in MW
+X=[x x x x x x x x x x];// // The capacity of the thermal plant in MW for plot
+xlabel('Time in hrs');
+ylabel('Load in MW');
+plot(T_p',L_p','b',T_p',X','b-.');
+legend('Load curve','Base load thermal plant');
+Ti=((x*24)/n_thb)*3600;// Total input to the thermal plant in 24 hours in MJ
+Tc_i=Er*(1/Q)*Ti*10^3;// Total cost of input energy during 24 hours in rupees
+Nr_2=Tc_s-Tc_i;// // Net revenue earned from the combined plant in Rs./day
+P=((Nr_2-Nr_1)/(Nr_1))*100;// Percentage increase in the profit
+printf('\n(a)The net revenue earned if the load is taken by the single thermal power plant=%0.3e rupees per day \n(b)The capacity of the thermal plant=%0.0f MW \n Percentage increase in the revenue earned=%0.1f percentage',Nr_1,x,P);