diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3733/CH3/EX3.3/Ex3_3.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3733/CH3/EX3.3/Ex3_3.sce')
-rw-r--r-- | 3733/CH3/EX3.3/Ex3_3.sce | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/3733/CH3/EX3.3/Ex3_3.sce b/3733/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..c301b3dbf --- /dev/null +++ b/3733/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,44 @@ +// Example 3_3 +clc;funcprot(0); +//Given data +L=[100 160 80 40 20];// Load in MW +T_1=[6,10];// Time in hours +T_2=[10,18];// Time in hours +T_3=[18,20];// Time in hours +T_4=[20,24];// Time in hours +T_5=[0,6];// Time in hours +n_th=[30 35 25 15 10]/100;// The thermal efficiencies of the plant +n_p=80;// The efficiency of the pump in % +n_t=90;// The efficiency of the turbine in % + +// Calculation +//(a) +T_p=[0 0 4 4 12 12 14 14 18 18 24 24];// Time in hours for load curve +L_p=[0 100 100 160 160 80 80 40 40 20 20 100];// Load in MW for load curve +plot(T_p',L_p','b'); +a=gca(); +a.x_ticks.labels=["6 A.M","","","12 P.M","","","6 A.M","","","12 P.M","","","6 A.M"]; +a.x_ticks.locations=[0;2;4;6;8;10;12;14;16;18;20;22;24]; +O=(L(1)*(T_1(2)-T_1(1)))+(L(2)*(T_2(2)-T_2(1)))+(L(3)*(T_3(2)-T_3(1)))+(L(4)*(T_4(2)-T_4(1)))+(L(5)*(T_5(2)-T_5(1)));// Total output per day in MW-hrs +I_1= ((L(1)*(T_1(2)-T_1(1)))/(n_th(1)))+((L(2)*(T_2(2)-T_2(1)))/(n_th(2)))+((L(3)*(T_3(2)-T_3(1)))/(n_th(3)))+((L(4)*(T_4(2)-T_4(1)))/(n_th(4)))+((L(5)*(T_5(2)-T_5(1)))/(n_th(5)));// The input to the thermal plant in MW-hrs +n_o1=(O/I_1)*100;// Over all efficiency in % + +//(b) +n_op=(n_p/100)*(n_t/100)*100;// The over all efficiency of the pump storage plant in % +// From the Fig.Prob.3.3 +function[X]=baseload(y) + X(1)=((((y(1)-L(3))*(T_3(2)-T_3(1)))+((y(1)-L(4))*(T_4(2)-T_4(1)))+((y(1)-L(5))*(T_5(2)-T_5(1))))*(n_op/100))-(((L(1)-y(1))*(T_1(2)-T_1(1)))+((L(2)-y(1))*(T_2(2)-T_2(1)))); +endfunction +y=[10]; +z=fsolve(y,baseload); +x=(z(1));// The capacity of the thermal plant in MW +X=[x x x x x x x x x x x x];//The capacity of the thermal plant in MW for plot +xlabel('Time in hrs'); +ylabel('Load in MW'); +plot(T_p',L_p','b',T_p',X','b-.'); +legend('Load curve','Base load thermal plant'); +I_2=(x*24)/(n_th(2));// The energy supplied in the second case in MW-hrs +n_o2=(O/I_2)*100;// The over all efficiency of the combined plant in % +PI=((I_1-I_2)/I_1)*100;// The percentage saving in input in % +printf('\n(a)The total input to the thermal plant=%0.0f MW-hrs \n(b)The percentage saving in input to the plant=%0.2f percentage \n(c)The over all efficiency of the thermal plant=%0.1f percentage \n The over all efficiency of the combined plant=%0.0f percentage',I_1,PI,n_o1,n_o2); +// The answer vary due to round off error |