diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3733/CH24/EX24.18 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3733/CH24/EX24.18')
-rw-r--r-- | 3733/CH24/EX24.18/Ex24_18.sce | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/3733/CH24/EX24.18/Ex24_18.sce b/3733/CH24/EX24.18/Ex24_18.sce new file mode 100644 index 000000000..198cca8f8 --- /dev/null +++ b/3733/CH24/EX24.18/Ex24_18.sce @@ -0,0 +1,54 @@ +// Example 24_18
+clc;funcprot(0);
+//Given data
+P=200;// Power plant capacity in MW
+T_6=1000;// K
+T_8=900;// K
+p_1=1;// bar
+T_1=27+273;// K
+p_r=5;// bar
+e=0.7;// The effectiveness of heat exchanger
+n_c=1;// Isentropic efficiency of both compressors
+n_t=0.9;// Efficiency of both turbines
+n_com=0.95;// Combustion efficiency
+n_m=0.92;// Mechanical efficiency of compressor and generator shafts
+CV=40000;// kJ/kg
+C_p=1;// kJ/kg.°C
+r=1.4;// Specific heat ratio for air and gases
+
+//Calculation
+p_2=p_1*p_r;// bar
+p_i=sqrt(p_1*p_2);// bar
+T_7a=T_6*(p_1/p_2)^((r-1)/r);// K
+n_t2=n_t;
+T_7=T_6-(n_t2*(T_6-T_7a));// K
+W_g=C_p*(T_6-T_7)*n_m;//Work done per kg of air in generator-turbine in kJ/kg
+m_2=CV/W_g;// The mass of exhaust gases in kg/sec
+T_2=T_1*(p_i)^((r-1)/r);// K
+W_c=2*C_p*(T_2-T_1);//Work done per kg of air in both compressors in kJ/kg
+T_4=T_2;// K
+// Assume m_1=y(1);T_5=y(2)
+function[X]=massflow(y);
+ X(1)=(m_2*C_p*(y(2)-T_8))-(y(1)*C_p*(T_8-T_4));
+ X(2)=((y(1)*C_p*(T_8-T_4))/(m_2*C_p*(y(2)-T_4)))-(e);
+endfunction
+y=[100 1000];
+z=fsolve(y,massflow);
+T_5=z(2);// K
+m_1=z(1);// kg/sec
+T_9a=T_8/(p_i)^((r-1)/r);// K
+n_t1=n_t;
+T_9=T_8-(n_t1*(T_8-T_9a));// K
+m_c1=(((m_1*(T_8-T_9))/((T_2-T_1)*n_m))-m_1)/2;// Air taken from atmosphere in kg/sec
+m_c2=m_c1+m_1;// kg/sec
+//Assume m_f=y(1)
+function[X]=massoffuel(z);
+ X(1)=((m_c2+z(1))*C_p*(T_5-T_4))/(CV*n_com)-z(1);
+endfunction
+z=[10];
+y=fsolve(z,massoffuel);
+m_f=y(1);// Mass of fuel used per second
+n_o=((P*10^3)/(CV*m_f))*100;// Over all efficiency of the plant in %
+Ctc=(m_1*C_p*(T_8-T_9))/1000;// Compressor-turbine capacity in MW
+printf('\n(a)Air taken from atmosphere per second=%0.0f kg/sec \n(b)Fuel required per second=%0.2f kg/sec \n(c)Over all efficiency of the plant=%0.1f percentage \n(d) Compressor-turbine capacity=%0.0f kW',m_c1,m_f,n_o,Ctc*1000);
+// The answer vary due to round off error
|