summaryrefslogtreecommitdiff
path: root/3733/CH17/EX17.16/Ex17_16.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3733/CH17/EX17.16/Ex17_16.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3733/CH17/EX17.16/Ex17_16.sce')
-rw-r--r--3733/CH17/EX17.16/Ex17_16.sce60
1 files changed, 60 insertions, 0 deletions
diff --git a/3733/CH17/EX17.16/Ex17_16.sce b/3733/CH17/EX17.16/Ex17_16.sce
new file mode 100644
index 000000000..0336aa547
--- /dev/null
+++ b/3733/CH17/EX17.16/Ex17_16.sce
@@ -0,0 +1,60 @@
+// Example 17_16
+clc;funcprot(0);
+// Given data
+m_s1=20;// tons/hr
+m_s1=20*10^3;// kg/hr
+m_a1=6;// kg/hr
+T_1=39;// °C
+T_2=28;// °C
+T_3=36;// °C
+gradT=15;// °C
+R=287;// J/kg.°C
+C_pa=1.005;// kJ/kg.°C
+C_pw=4.18;//kJ/kg.°C
+
+// Calculation
+// Considering section 1-1
+// From steam tables,at T_1=39°C
+p_s1=0.06991;// bar
+v_s1=20.56;// m^3/kg
+h_s1=2572.6;// kJ/kg
+V_s1=(m_s1*10^3*v_s1);// m^3/hr
+// By Dalton's law,
+V_a1=V_s1;// m^3/hr
+p_a1=(m_a1*R*(T_1+273))/(V_a1);// N/m^2
+p_a1=p_a1/10^5;// bar
+p_t=p_s1+p_a1;// bar
+
+//Considering section 2-2
+//From steam tables,at T_2=28°C
+p_s2=0.0378;// bar
+v_s2=36.728;// m^3/kg
+h_s2=2552.7;// kJ/kg
+p_a2=p_t-p_s2;// bar
+V_a2=(m_a1*R*(T_2+273))/(p_a2*10^5);// m^3/hr
+//As per Dalton's law,
+V_s2=V_a2;// m^3/hr
+m_s2=V_a2/v_s2;// kg/hr
+
+// Considering section 3-3
+// From steam tables,at T_3=36°C
+p_s3=0.0594;// bar
+v_s3=23.967;// m^3/kg
+p_a3=p_t-p_s3;// bar
+V_s3=(m_a1*R*(T_3+273))/(p_a3*10^5);// m^3/hr
+V_a3=V_s3;// m^3/hr
+m_s3=V_a3/v_s3;// kg/hr
+Pr=((V_a3-V_a2)/V_a3)*100;// %
+
+// Determination of cooling water requirement
+// Assume
+m_a2=m_a1;
+m_c=m_s1;// (assumed))
+m_w=(((m_s1*h_s1)-(m_s2*h_s2))+((m_a1*C_pa*T_1)-(m_a2*C_pa*T_2))-(m_c*C_pw*T_3))/(C_pw*gradT);// kg/hr
+m_w=m_w/10^3;// tons/hr
+m_w=(m_w*10^3)/3600;// kg/sec
+m_sc=m_s3-m_s2;// Saving in condensate in kg/hr
+Q=m_sc*C_pw*(T_3-gradT);//kJ/hr
+printf('\nPercentage reduction in air pump capacity=%0.1f percentage \nMinimum quantity of cooling water=%0.1f kg/sec \nSaving in the condensate=%0.2f kg/hr \nSaving in heat supplied,Q=%0.2f kJ/hr',Pr,m_w,m_sc,Q);
+// The answer vary due to round off error
+