diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3731/CH5/EX5.14/Ex5_14.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3731/CH5/EX5.14/Ex5_14.sce')
-rw-r--r-- | 3731/CH5/EX5.14/Ex5_14.sce | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/3731/CH5/EX5.14/Ex5_14.sce b/3731/CH5/EX5.14/Ex5_14.sce new file mode 100644 index 000000000..4b499ef77 --- /dev/null +++ b/3731/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,89 @@ +//Chapter 5:Dc Motor Drives +//Example 14 +clc; + +//Variable Initialization + +//Ratings of the separately excited motor is same as that of Ex-5.13 +V=200 // rated voltage in v +N=875 // rated speed in rpm +Ia=150 // rated current in A +Ra=0.06 // armature resistance in ohms +Vs=220 // source voltage in v +f=50 //frequency of the source voltage in hz +La=0.85e-3 // armature curcuit inductance in H + +//Solution +E=V-Ia*Ra //back emf +Vm=sqrt(2)*Vs //peak voltage +Wm=2*%pi*N/60 //synchronous angular speed + +//(i)When the speed is 400 rpm and firing angle is 60 degrees +N1=400 //given speed in rpm +alpha=60 //firing angle in degrees +W=2*%pi*f +x=W*La/Ra +phi=atan(x) +cot_phi=1/tan(phi) +Z=sqrt(Ra**2+(W*La)**2) +K=E/Wm + +y=Ra*Vm/Z/K +a=(1+exp(-(%pi*cot_phi)))/(exp(-(%pi*cot_phi))-1) +alpha=alpha*%pi/180 +Wmc=y*sin(alpha-phi)*a //required angular speed in rps +Nmc=Wmc*60/2/%pi //required angular speed in rpm + +E1=N1/N*E + +//The equation Vm/Z*sin(beta-phi)-E/Ra+(E/Ra-Vm/Z*sin(alpha-phi))*exp(-(beta-alpha)*cot_phi)=0 +//can be solved using trial method such that beta=230 degrees +beta=230 //in degrees +beta=beta*%pi/180//in radians + +Va=(Vm*(cos(alpha)-cos(beta))+(%pi+alpha-beta)*E1)/%pi +Ia=(Va-E1)/Ra +T1=K*Ia + +//(ii)When the speed is -400 rpm and firing angle is 120 degrees +Le=2e-3 //external inductance added to the armature +L=La+Le +N2=-400 //given speed in rpm +alpha=120 //firing angle in degrees +x=W*L/Ra +phi=atan(x) +cot_phi=1/tan(phi) +Z=sqrt(Ra**2+(W*L)**2) +K=E/Wm + +y=Ra*Vm/Z/K +alpha=alpha*%pi/180 +a=(1+exp(-(%pi*cot_phi)))/(exp(-(%pi*cot_phi))-1) +Wmc=y*sin(alpha-phi)*a //required angular speed in rps +Nmc1=Wmc*60/2/%pi //required angular speed in rpm +//The motor is operating under discontinous condition" +E2=N2/N*E + +//The equation Vm/Z*sin(beta-phi)-E/Ra+(E/Ra-Vm/Z*sin(alpha-phi))*exp(-(beta-alpha)*cot_phi)=0 +//can be solved using trial method such that beta=281 degrees +beta=281 //in degrees +beta=beta*%pi/180//in radians + +Va=(Vm*(cos(alpha)-cos(beta))+(%pi+alpha-beta)*E2)/%pi +Ia=(Va-E2)/Ra +T2=K*Ia + +//(iii)When the speed is -600 rpm and firing angle is 120 degrees +N3=-600 //speed in rpm +alpha=120 //firing angle in degrees +alpha=alpha*%pi/180 +Va=2*Vm/%pi*cos(alpha) +E3=N3/N*E //since Va=E1+Ia*Ra +Ia=(Va-E3)/Ra +T3=K*Ia + +//Results +mprintf("(i)Hence the required torque is :%.2f N-m",T1) +mprintf("\n(ii)Hence the required torque is :%.1f N-m",T2) +mprintf("\n(iii)Hence the required torque is :%.1f N-m",T3) +//There is a minor difference in the answers because of accuracy |