diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3720/CH6 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3720/CH6')
-rw-r--r-- | 3720/CH6/EX6.1/Ex6_1.sce | 9 | ||||
-rw-r--r-- | 3720/CH6/EX6.2/Ex6_2.sce | 24 | ||||
-rw-r--r-- | 3720/CH6/EX6.3/Ex6_3.sce | 15 | ||||
-rw-r--r-- | 3720/CH6/EX6.4/Ex6_4.sce | 10 | ||||
-rw-r--r-- | 3720/CH6/EX6.5/Ex6_5.sce | 21 | ||||
-rw-r--r-- | 3720/CH6/EX6.6/Ex6_6.sce | 18 | ||||
-rw-r--r-- | 3720/CH6/EX6.7/Ex6_7.sce | 20 | ||||
-rw-r--r-- | 3720/CH6/EX6.8/Ex6_8.sce | 17 | ||||
-rw-r--r-- | 3720/CH6/EX6.9/Ex6_9.sce | 20 |
9 files changed, 154 insertions, 0 deletions
diff --git a/3720/CH6/EX6.1/Ex6_1.sce b/3720/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..66162e627 --- /dev/null +++ b/3720/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,9 @@ +//Example 6_1
+clc;clear;
+// Given values
+y_0=0;// Lower limit of the integral
+y_1=1;// Upper limit of the integral
+
+// Analysis
+b=-4*integrate('(y^2)','y',y_1,y_0);
+printf("The momentum-flux correction factor for fully developed laminar flow becomes %0.2f \n",b);
diff --git a/3720/CH6/EX6.2/Ex6_2.sce b/3720/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..123dc4371 --- /dev/null +++ b/3720/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,24 @@ +//Example 6_2
+clc;clear;
+// Given values
+m=14;//Water flow rate in kg/s
+rho=1000;//The density of water in kg/m^3
+A_1=0.0113;// The cross sectional area of the elbow at inlet in m^2
+A_2=7*10^-4;// The cross sectional area of the elbow at outlet in m^2
+z_2=0.3;// m
+z_1=0;// m
+g=9.81;// The acceleration due to gravity in m/s^2
+theta=30;// degree
+b=1.03;// The momentum-flux correction factor
+
+// Calculation
+//(a)
+v_1=m/(rho*A_1);
+v_2=m/(rho*A_2);//The inlet and the outlet velocities in m/s
+P_1g=(rho*g*(((v_2^2-v_1^2)/(2*g))+(z_2-z_1)))/1000;// kPa
+printf("The gage pressure at the center of the inlet of the elbow=%0.1f kPa\n",P_1g);
+//(b) z
+F_Rx=b*m*(((v_2*cosd(theta))-v_1))-(P_1g*1000*A_1);// N
+F_Rz=b*m*v_2*sind(theta);// N
+printf("The anchoring force of the elbow be F_Rx=%0.0f N,F_Rz=%0.0f N\n",F_Rx,F_Rz);
+// The answer vary due to round off error
diff --git a/3720/CH6/EX6.3/Ex6_3.sce b/3720/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..a932bfa35 --- /dev/null +++ b/3720/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,15 @@ +//Example 6_3
+clc;clear;
+// Given values
+//From example 6_2
+b=1.03;// The momentum-flux correction factor
+m=14;// Water flow rate in kg/s
+v_1=1.24;// The inlet velocity in m/s
+v_2=20;// The outlet velocity in m/s
+P_1g=202200;// Gage pressure in N/m^2
+A_1=0.0113;// m^2
+
+//Calculation
+F_Rx=(-b*m*(v_2+v_1))-(P_1g*A_1);// N
+printf("The anchoring force needed to hold the elbow in place=%0.0f N\n",F_Rx);
+// The answer vary due to round off error
diff --git a/3720/CH6/EX6.4/Ex6_4.sce b/3720/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..2c9f83b64 --- /dev/null +++ b/3720/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,10 @@ +//Example 6_4
+clc;clear;
+// Given values
+b=1;// The momentum-flux correction factor
+m=10;//Mass flow rate at kg/s
+V_1=20;// m/s
+
+// Calculation
+F_r=b*m*V_1;
+printf("The force needed to prevent the plate from moving horizontally due to the water stream=%0.0f N\n",F_r);
diff --git a/3720/CH6/EX6.5/Ex6_5.sce b/3720/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..6cb783e73 --- /dev/null +++ b/3720/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,21 @@ +//Example 6_5
+clc;clear;
+// given values
+rho=0.076;//The density of air in lbm/ft^3
+V_1=7*1.4667;// Wind speed in ft/s
+D=30;//Diameter in ft
+W_act=0.4;//kW
+
+//Calculation
+//(a)
+A_1=(%pi*D^2)/4;
+m=rho*V_1*A_1;
+Ke_1=((V_1^2)/(2*32.2*737.56));
+W_max=m*Ke_1;
+n_wt=W_act/W_max;
+printf("The efficiency of the wind turbine–generator unit=%0.3f or(%0.1f percentage)\n",n_wt,n_wt*100);
+//(b)
+V_2=V_1*sqrt(1-n_wt);//The exit velocity in m/s
+F_r=(m*(V_2-V_1))/32.2;
+printf("The horizontal force exerted by the wind on the supporting mast of the wind turbine=%0.1f lbf\n",F_r);
+// The answer vary due to round off error
diff --git a/3720/CH6/EX6.6/Ex6_6.sce b/3720/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..75d1af7dc --- /dev/null +++ b/3720/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,18 @@ +//Example 6_6
+clc;clear;
+// Given values
+m_f=100;// kg
+V_f=3000;//Velocity of solid fuel in m/s
+dt=2;// seconds
+m_sat=5000;// kg
+
+// Calculation
+//(a)
+a_sat=((m_f/dt)*V_f)/m_sat;
+printf("The acceleration of the satellite during the first 2 s=%0.0f m/s^2\n",a_sat);
+//(b)
+dV_sat=a_sat*dt;
+printf("The change of velocity of the satellite=%0.0f m/s\n",dV_sat);
+//(c)
+F_sat=(0-(m_f/dt)*(-V_f))/1000;
+printf("The thrust exerted on the satellite=%0.0f kN\n",F_sat);
diff --git a/3720/CH6/EX6.7/Ex6_7.sce b/3720/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..b2106683a --- /dev/null +++ b/3720/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,20 @@ +//Example 6_7
+clc;clear;
+// Given values
+v=18.5;// Flow rate of water in gal/min
+D=0.0650;// The inner diameter of the pipe in ft
+rho=62.3;// The density of water at room temperature in lbm/ft^3
+P_1g=13// lbf/in^2
+W_f=12.8;// The total weight of the faucet assembly plus the water in lbf
+
+// Calculation
+A_c=(%pi*D^2/4);// ft^2
+V=(v*0.1337)/(A_c*60);// ft/s
+//V=V_1=V_2
+m=(rho*v)*(0.1337/60);// lbm/s
+A_1=((%pi*(0.780)^2)/4);// ft^2
+F_rx=((-m*V)/32.2)-(P_1g*A_1);// lbf
+F_rz=((-m*V)/32.2)+W_f;// lbf
+F_r=[F_rx F_rz]// lbf
+F_f=-[F_r];// lbf
+printf('The net force on the flange,F_faucet on flange=%0.2fi+(%0.1f)k \n',F_f(1),F_f(2));
diff --git a/3720/CH6/EX6.8/Ex6_8.sce b/3720/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..2ef8824a0 --- /dev/null +++ b/3720/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,17 @@ +//Example 6_8
+clc;clear;
+// Given values
+rho=1000;//The density of water in kg/m^3
+D=0.10;// Diameter in m
+V=3;// Average velocity in m/s
+g=9.81;// The acceleration due to gravity m/s^2
+m=12;//Mass per meter length in kg/m
+r_1=0.5;
+r_2=2;// The average moment arm at inlet & outlet in m
+
+// Calculation
+A_c=((%pi*D^2)/4);// m^2
+m_1=rho*A_c*V;// The mass flow rate in kg/s
+W=m*g;//The weight of the horizontal section of the pipe in N
+M_a=(r_1*W)-(r_2*m_1*V);// N.m
+printf("The bending moment acting at the base of the pipe (point A)=%0.1f N.m\n",M_a);
diff --git a/3720/CH6/EX6.9/Ex6_9.sce b/3720/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..bcff837b5 --- /dev/null +++ b/3720/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,20 @@ +//Example 6_9
+clc;clear;
+// Given values
+rho=1;//The density of water in kg/L
+n=300;//rpm
+D=0.01;// Diameter of each jet in m
+V_t=20;// L/s
+V_n=V_t/4;// L/s
+r=0.6;//m
+
+// Calculation
+A_j=(%pi*D^2)/4;//Area of jet in m^2
+V_j=(V_n)/(A_j*1000);//Average jet exit velocity in m/s
+w=(2*(%pi)*n)/60;// The angular momentum of the nozzle in rad/s
+v_n=r*w;//The tangential velocities of the nozzle in m/s
+v_r=V_j-v_n;//The average velocity of the water jet relative to the control volume in m/s
+m_t=rho*V_t;// Mass flow rate in kg/s
+T_shaft=r*m_t*v_r;// The torque transmitted through the shaft in Nm
+W=(w*T_shaft)/1000;
+printf("The electric power generated=%0.1f kW\n",W);
|