diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3717/CH7 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3717/CH7')
-rw-r--r-- | 3717/CH7/EX7.1/Ex7_1.sce | 11 | ||||
-rw-r--r-- | 3717/CH7/EX7.10/Ex7_10.sce | 26 | ||||
-rw-r--r-- | 3717/CH7/EX7.12/Ex7_12.sce | 13 | ||||
-rw-r--r-- | 3717/CH7/EX7.13/Ex7_13.sce | 12 | ||||
-rw-r--r-- | 3717/CH7/EX7.3/Ex7_3.sce | 14 | ||||
-rw-r--r-- | 3717/CH7/EX7.6/Ex7_6.sce | 33 |
6 files changed, 109 insertions, 0 deletions
diff --git a/3717/CH7/EX7.1/Ex7_1.sce b/3717/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..a02203809 --- /dev/null +++ b/3717/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,11 @@ +// Ex7_1 Page:113 (2014)
+clc;clear;
+e = 1.6e-019; // Energy conversion factor, J/eV
+mu_B = 9.27e-024; // Bohr magneton, J/T
+B = 3; // Magnetic field, T
+m_l = [-1, 1]; // Orbital magnetic quantum number
+dE = mu_B*B*(m_l(2)-m_l(1))/e; // Energy difference between m_l = -1 and m_l = +1, eV
+printf("\nThe energy difference between m_l = -1 and m_l = +1 components in 2p state = %4.2e eV", dE);
+
+// Result
+// The energy difference between m_l = -1 and m_l = +1 components in 2p state = 3.48e-004 eV
\ No newline at end of file diff --git a/3717/CH7/EX7.10/Ex7_10.sce b/3717/CH7/EX7.10/Ex7_10.sce new file mode 100644 index 000000000..649c96aef --- /dev/null +++ b/3717/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,26 @@ +// Ex7_10 Page:136 (2014)
+clc;clear;
+// Case 1: For pure orbital angular momentum
+S = poly(0, 'S'); // Total spin angular momentum variable
+S = 0; // S value for pure orbital angular momentum
+L = poly(0, 'L'); // Total orbital angular momentum variable
+J = L + S; // J value for pure orbital angular momentum
+g = horner(1 + (J*(J + 1) + S*(S + 1) - L*(L + 1))/(2*J*(J + 1)), 0); // Lande's g-factor
+printf("\nFor pure orbital angular momentum, g = %d", g);
+// Case 2: For pure spin angular momentum
+S = poly(0, 'S'); // Total spin angular momentum variable
+L = 0; // L value for pure spin angular momentum
+J = L + S; // J value for pure spin angular momentum
+g = horner(1 + (J*(J + 1) + S*(S + 1) - L*(L + 1))/(2*J*(J + 1)), 0); // Lande's g-factor
+printf("\nFor pure spin angular momentum, g = %d", g);
+// Case 3: For state 3P1
+S = 1; // S value for pure spin angular momentum
+L = 1; // L value for pure spin angular momentum
+J = L + S; // J value for pure spin angular momentum
+g = horner(1 + (J*(J + 1) + S*(S + 1) - L*(L + 1))/(2*J*(J + 1)), 0); // Lande's g-factor
+printf("\nFor 3P1 state, g = %d/2", 2*g);
+
+// Result
+// For pure orbital angular momentum, g = 1
+// For pure spin angular momentum, g = 2
+// For 3P1 state, g = 3/2
\ No newline at end of file diff --git a/3717/CH7/EX7.12/Ex7_12.sce b/3717/CH7/EX7.12/Ex7_12.sce new file mode 100644 index 000000000..dc3894dfd --- /dev/null +++ b/3717/CH7/EX7.12/Ex7_12.sce @@ -0,0 +1,13 @@ +// Ex7_12 Page:141 (2014)
+clc;clear;
+E_K_alpha = 21.99; // The energy in silver for K_alpha X-ray, keV
+E_K_beta = 25.145; // The energy in silver for K_beta X-ray, keV
+EB_K = 25.514; // The binding energy of K electron in silver, keV
+E_L_alpha = E_K_beta - E_K_alpha; // The energy in silver for L_alpha X-ray, keV
+EB_L = -EB_K + E_K_alpha; // The binding energy of L electron in silver, keV
+printf("\nThe energy of the L_alpha X-ray = %5.3f keV", E_L_alpha);
+printf("\nThe binding energy of the L electron = %5.3f keV", EB_L);
+
+// Result
+// The energy of the L_alpha X-ray = 3.155 keV
+// The binding energy of the L electron = -3.524 keV
\ No newline at end of file diff --git a/3717/CH7/EX7.13/Ex7_13.sce b/3717/CH7/EX7.13/Ex7_13.sce new file mode 100644 index 000000000..eda812b4b --- /dev/null +++ b/3717/CH7/EX7.13/Ex7_13.sce @@ -0,0 +1,12 @@ +// Ex7_13 Page:141 (2014)
+clc;clear;
+Z = 11; // Atomic number of sodium
+h = 6.626e-034; // Planck's constant, Js
+e = 1.6e-019; // Energy conversion factor, J/eV
+c = 3e+08; // Speed of light in vacuum, m/s
+R_inf = 1.097e+07; // Rydberg constant, per metre
+E_K_alpha = (3*h*c*R_inf*(Z - 1)^2)/(4*e*1e+03); // The energy of the K_alpha X-ray of sodium, keV
+printf("\nThe energy of the K_alpha X-ray of sodium = %4.2f keV", E_K_alpha);
+
+// Result
+// The energy of the K_alpha X-ray of sodium = 1.02 keV
\ No newline at end of file diff --git a/3717/CH7/EX7.3/Ex7_3.sce b/3717/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..2a76951fb --- /dev/null +++ b/3717/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,14 @@ +// Ex7_3 Page:118 (2014)
+clc;clear;
+l = 2; // Orbital angular momentum quantum number
+s = 0.5; // Spin quantum number
+state = ["D(5/2)", "D(3/2)"]; // States of the d-electron
+j = [l + s, l - s]; // Total angular momentum quantum number
+for i = 1:2
+ theta(i) = acosd((j(i)*(j(i)+1) - l*(l+1) - s*(s+1))/(2*sqrt(l*(l+1))*sqrt(s*(s+1))));
+ printf("\nThe angle between L and S for %s state = %5.2f degree", state(i), theta(i));
+end
+
+// Result
+// The angle between L and S for D(5/2) state = 61.87 degree
+// The angle between L and S for D(3/2) state = 135.00 degree
diff --git a/3717/CH7/EX7.6/Ex7_6.sce b/3717/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..ab4186b33 --- /dev/null +++ b/3717/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,33 @@ +// Ex7_6 Page:126 (2014)
+clc;clear;
+l1 = 1; // Orbital angular momentum quantum number of first electron
+l2 = 2; // Orbital angular momentum quantum number of second electron
+s1 = 0.5; // Spin quantum number of first electron
+s2 = 0.5; // Spin quantum number of second electron
+L_max = l1 + l2;
+L_min = l2 - l1;
+S_max = s1 + s2;
+S_min = s1 - s2;
+printf("\nThe possible values of L, S and J are:");
+for L = L_max:-1:L_min
+ for S = S_max:-1:S_min
+ J_max = L + S; J_min = L - S;
+ printf("\nL = %d, S = %d, J = ", L, S);
+ for J = J_max:-1:J_min
+ if (J <> J_min) then
+ printf("%d, ", J);
+ else
+ printf("%d", J);
+ end
+ end
+ end
+end
+
+// Result
+// The possible values of L, S and J are:
+// L = 3, S = 1, J = 4, 3, 2
+// L = 3, S = 0, J = 3
+// L = 2, S = 1, J = 3, 2, 1
+// L = 2, S = 0, J = 2
+// L = 1, S = 1, J = 2, 1, 0
+// L = 1, S = 0, J = 1
|