diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3683/CH4 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3683/CH4')
-rw-r--r-- | 3683/CH4/EX4.1/Ex4_1.sce | 11 | ||||
-rw-r--r-- | 3683/CH4/EX4.2/Ex4_2.sce | 12 | ||||
-rw-r--r-- | 3683/CH4/EX4.3/Ex4_3.sce | 13 | ||||
-rw-r--r-- | 3683/CH4/EX4.4/Ex4_4.sce | 17 | ||||
-rw-r--r-- | 3683/CH4/EX4.5/Ex4_5.sce | 27 | ||||
-rw-r--r-- | 3683/CH4/EX4.6/Ex4_6.sce | 37 | ||||
-rw-r--r-- | 3683/CH4/EX4.7/Ex4_7.sce | 23 | ||||
-rw-r--r-- | 3683/CH4/EX4.8/Ex4_8.sce | 28 | ||||
-rw-r--r-- | 3683/CH4/EX4.9/Ex4_9.sce | 24 |
9 files changed, 192 insertions, 0 deletions
diff --git a/3683/CH4/EX4.1/Ex4_1.sce b/3683/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..ab9edc58a --- /dev/null +++ b/3683/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,11 @@ +b=250//width, in mm
+d=500//effective depth, in mm
+W=20//UDL including self-weight, in kN/m
+Pt=1//percentage tensile steel
+l=6//span, in m
+V=W*l/2//in kN
+Tv=(V*10^3)/(b*d)//in MPa
+//for Pt=1% and for M15 grade concrete
+Tc=0.37//in MPa
+//as Tv>Tc, shear reinforcement is required
+mprintf("Nominal shear stress in beam=%f MPa\nShear strength of concrete=%f MPa", Tv,Tc)
diff --git a/3683/CH4/EX4.2/Ex4_2.sce b/3683/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..10f33cb23 --- /dev/null +++ b/3683/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,12 @@ +b=230//width, in mm
+d=500//effective depth, in mm
+W=24//UDL including self-weight, in kN/m
+Ast=4*0.785*20^2//four 20 mm dia bars, in sq mm
+Pt=Ast/(b*d)*100//percentage tensile steel
+l=4.5//span, in m
+V=W*l/2//in kN
+Tv=(V*10^3)/(b*d)//in MPa
+//for Pt=1.1% and for M20 grade concrete
+Tc=0.40//in MPa
+//as Tv>Tc, shear reinforcement is required
+mprintf("Nominal shear stress in beam=%f MPa\nShear strength of concrete=%f MPa", Tv,Tc)
diff --git a/3683/CH4/EX4.3/Ex4_3.sce b/3683/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..28b45f7c4 --- /dev/null +++ b/3683/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,13 @@ +b=300//width, in mm
+d=600//effective depth, in mm
+W=100//UDL including self-weight, in kN/m
+Pt=2//percentage tensile steel
+l=7.2//span, in m
+sigma_cbc=7//in MPa
+sigma_st=190//in MPa
+m=13.33//modular ratio
+V=W*l/2//in kN
+Tv=(V*10^3)/(b*d)//in MPa
+Tcmax=1.8//in MPa
+//as Tv>Tcmax, section is to be redesigned so that Tv becomes less than Tcmax
+mprintf("Nominal shear stress in beam=%f MPa\nFor given grade of concrete, Tcmax=1.8 MPa and as Tv > Tcmax, section is to be redesigned so that Tv becomes less than Tcmax", Tv)
diff --git a/3683/CH4/EX4.4/Ex4_4.sce b/3683/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..4d3a2a3f8 --- /dev/null +++ b/3683/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,17 @@ +b=1000//consider 1 m width of slab
+D=100//depth of slab, in mm
+cover=20//in mm
+d=D-cover//effective depth, in mm
+W=7//uniformly distributed load, in kN/m^2
+dia=10//in mm
+s=100//spacing of 10 mm dia bars, in mm
+l=4//span, in m
+V=W*l/2//in kN
+Pt=1000*.785*dia^2/(s*b*d)*100//in %
+Tv=(V*10^3)/(b*d)//in MPa
+//for given Pt and M15 grade concrete
+Tc=0.37//in MPa
+//and for solid slabs
+k=1.3
+Tc=k*Tc//in MPa
+mprintf("Nominal shear stress in slab, Tv=%f MPa\nShear strength of slab, Tc=%f MPa. As Tc > Tv, no shear reinforcement is required", Tv, Tc)
diff --git a/3683/CH4/EX4.5/Ex4_5.sce b/3683/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..e9ddc8b3f --- /dev/null +++ b/3683/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,27 @@ +b=300//width, in mm
+d=1010//effective depth, in mm
+W=45//UDL including self-weight, in kN/m
+Ast=6*0.785*22^2//six 22 mm dia bars, in sq mm
+l=7//span, in m
+sigma_cbc=5//in MPa
+sigma_sv=140//in MPa
+Fy=250//in MPa
+V=W*l/2//in kN
+Tv=(V*10^3)/(b*d)//in MPa
+Tcmax=1.6//in MPa
+//Tv<Tcmax; OK
+Pt=Ast/(b*d)*100//percentage tensile steel
+//for given Pt and for M15 grade concrete
+Tc=0.34//in MPa
+Vs=V-Tc*b*d/10^3//in kN
+//providing 6 mm dia stirrups
+dia=6//in mm
+Asv=2*0.785*dia^2//in sq mm
+Sv1=Asv*sigma_sv*d/(Vs*10^3)//in mm
+Sv1=145//round-off, in mm
+//Sv<0.75d or 450 mm, whichever is less; hence OK
+//calculating minimum spacing of shear reinforcement
+Sv2=Asv*Fy/(b*0.4)//in mm
+Sv2=118//round-off, in mm
+Sv=min(Sv1,Sv2)
+mprintf("Provide 6 mm dia bars at %d mm c/c throughout the length of the beam, as shear reinforcement", Sv)
diff --git a/3683/CH4/EX4.6/Ex4_6.sce b/3683/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..80481c622 --- /dev/null +++ b/3683/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,37 @@ +Bf=1600//width, in mm
+Df=100//thickness of slab, in mm
+d=400//effective depth, in mm
+Bw=225//breadth of web, in mm
+b=Bw
+W=30//UDL including self-weight, in kN/m
+Ast=5*0.785*22^2//five 22 mm dia bars, in sq mm
+l=9.2//span, in m
+sigma_cbc=5//in MPa
+sigma_sv=230//in MPa
+Fy=415//in MPa
+V=W*l/2//in kN
+Tv=(V*10^3)/(b*d)//in MPa
+Tcmax=1.6//in MPa
+//Tv<Tcmax; OK
+Pt=Ast/(b*d)*100//percentage tensile steel
+//for given Pt and for M15 grade concrete
+Tc=0.44//in MPa
+Vs=V-Tc*b*d/10^3//in kN
+//providing bent-up bars
+Asv=0.785*22^2//in sq mm
+Vs1=Asv*sigma_sv*sind(45)/10^3//in kN
+//but shear taken up by bent-up bar is limited to Vs/2
+Vs1=Vs/2//in kN
+//providing 6 mm dia stirrups, which will take up remaining shear force
+Vs2=Vs-Vs1//in kN
+dia=6//in mm
+Asv=2*0.785*dia^2//in sq mm
+Sv=Asv*sigma_sv*d/(Vs2*10^3)//in mm
+Sv1=105//round-off, in mm
+//Sv<0.75d or 450 mm, whichever is less; hence OK
+//calculating minimum spacing of shear reinforcement
+Sv2=Asv*Fy/(b*0.4)//in mm
+Sv2=260//round-off, in mm
+//to calculate distance 'x' from support where shear stress in concrete is equal to Tc
+x=Tc/Tv*l/2//in m
+mprintf("Provide 6 mm dia stirrups at %d mm c/c upto %f m from both ends\nFor the remaining portion, provide 6 mm dia stirrups at %d mm", Sv1,(l/2-x),Sv2)
diff --git a/3683/CH4/EX4.7/Ex4_7.sce b/3683/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..fba2b71a3 --- /dev/null +++ b/3683/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,23 @@ +D=100//thickness of slab, in mm
+l=3//span of slab, in m
+s=0.23//thickness of support, in m
+Lef=l+s//effective span, in m
+W=5//UDL, in kN/m
+cover=15//in mm
+R=W*Lef/2//in kN
+M=(R*s/2-W*s^2/2)*10^6//bending moment at face of wall, in N-mm
+//10 mm dia bars at 145 mm c/c as main steel
+dia=10//in mm
+c=145//spacing of reinforcement, in mm
+Ast=1000*0.785*dia^2/c//in sq mm
+//as alternate bars are bent up
+Ast=Ast/2//available steel reinforcement at face of wall, in sq mm
+d=D-10/2-cover//in mm
+//assuming balanced section
+z=0.87*d//in mm
+sigma_st=M/(Ast*z)//in MPa
+Tbd=0.6//bond stress, in MPa
+Ld=dia*sigma_st/(4*Tbd)//in mm
+Ld=177//round-off, in mm
+mprintf("Development length required from the face of the support = %d mm",Ld)
+//answer given in textbook is incorrect
diff --git a/3683/CH4/EX4.8/Ex4_8.sce b/3683/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..d43119ccf --- /dev/null +++ b/3683/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,28 @@ +b=230//width, in mm
+d=500//effective depth, in mm
+l=6//span, in m
+s=0.3//thickness of support, in m
+Lef=l+s//effective span, in m
+W=60//UDL, in kN/m
+Ast=6*0.785*20^2//six 20 mm dia bars at bottom, in sq mm
+Asc=2*0.785*20^2//two 20 mm dia bars at top, in sq mm
+dia=20//in mm
+sigma_cbc=5//in MPa
+sigma_st=230//in MPa
+m=18.66//modular ratio
+R=W*l/2//in kN
+M=(R*s/2-W*s^2/2)*10^6//bending moment at face of wall, in N-mm
+//assuming balanced section
+z=0.87*d//in mm
+sigma_st1=M/(Ast*z)//in MPa
+Tbd=0.6*1.4//bond stress in MPa for deformed steel and M15
+Ld1=dia*sigma_st1/(4*Tbd)//in mm
+//to find critical depth of neutral axis
+Xc=d/(1+sigma_st/(m*sigma_cbc))//in mm
+Xc=144//round-off, in mm
+//at face of support
+sigma_cbc=sigma_st1/m*Xc/(d-Xc)//in MPa
+sigma_sc=1.5*m*sigma_cbc//in MPa
+Tbd=1.68//bond stress in MPa for M15 and deformed steel in compression
+Ld2=dia*sigma_sc/(4*Tbd)//in mm
+mprintf("Development length required from the face of the support for tension steel = %d mm\nDevelopment length required from the face of the support for compression steel = %d mm",Ld1,Ld2)
diff --git a/3683/CH4/EX4.9/Ex4_9.sce b/3683/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..8a752d6a2 --- /dev/null +++ b/3683/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,24 @@ +D=120//thickness of slab, in mm
+l=1.5//span of slab, in m
+s=0.23//thickness of support, in m
+Lef=l+s//effective span, in m
+W1=3//UDL, in kN/m^2
+cover=15//in mm
+sigma_cbc=5//in MPa
+sigma_st=140//in MPa
+m=18.66//modular ratio
+W2=(D/10^3)*1*25//self load, in kN/m
+W=W1+W2//in kN/m
+M=W*l^2/2*10^6//bending moment at face of wall, in N-mm
+//10 mm dia bars at 145 mm c/c as main steel
+dia=10//in mm
+d=D-dia/2-cover
+c=100//spacing of reinforcement, in mm
+Ast=1000*0.785*dia^2/c//in sq mm
+//assuming balanced section
+z=0.87*d//in mm
+sigma_st=M/(Ast*z)//in MPa
+Tbd=0.6//bond stress in MPa
+Ld=dia*sigma_st/(4*Tbd)//in mm
+Ld=412//round-off,in mm
+mprintf("Development length required from the face of the support = %d mm",Ld)
|