diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3682/CH2/EX2.18 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3682/CH2/EX2.18')
-rw-r--r-- | 3682/CH2/EX2.18/Ex2_18.sce | 61 |
1 files changed, 61 insertions, 0 deletions
diff --git a/3682/CH2/EX2.18/Ex2_18.sce b/3682/CH2/EX2.18/Ex2_18.sce new file mode 100644 index 000000000..02ba0e28c --- /dev/null +++ b/3682/CH2/EX2.18/Ex2_18.sce @@ -0,0 +1,61 @@ +// Exa 2.18
+
+clc;
+clear;
+
+// Given data
+
+// op-amp circuit as shown in Fig. 2.35
+h_fe = 100;
+Vbe = 0.7; Vcc = 15; Vee = 15; Vt = 0.025; // Volts
+// Vt = volt equivalent at room temperature
+R1 = 20; R2 = 20; R3 = 28.6; R6 = 3; R8 = 2.3;
+R9 = 3; Ra = 15.7; // All in k Ω
+
+// Solution
+
+printf('It can be seen that the circuit has the four stages: \n Dual-input, differential output. \n Dual-input, single ended output. \n Level translator. \n Emitter follower.\n ');
+
+printf('\n\n For d.c. analysis, assume that the input terminals are shorted to ground.\n');
+I = (Vee-Vbe)/R3;
+printf(' The reference current I of the current minor Q3-Q4 is obtained as I = %.1f mA. \n',I);
+printf('\n Due to current mirror action, Icq4 = I = %.1f mA and Icq1 = Icq2 = Icq/2 = %.3f mA. \n',I,I/2);
+Vcq1 = Vcc-(I/2)*R1;
+printf(' The collector voltages for Q1 and Q2 are Vcq1 = Vcq2 = %d V. \n',Vcq1);
+Veq5 = Vcq1-Vbe;
+printf('\n The voltage at emitter of Q5 and Q6 is Veq5 = Veq6 = %.1f V. \n',Veq5);
+Icq7=4*I;
+printf(' Since the area of Q7 is 4 times that of Q3 and Q4, the transistor Q7 supplies a current Icq7 = %d mA. \n',Icq7);
+printf('\n Thus, collector currents of Q5 and Q6 are Icq5 = Icq6 = %d mA. \n',Icq7/2 );
+Vcq6 = Vcc-(Icq7/2)*R6;
+printf(' Hence, collector voltage of Q6 is Vcq6 = %d V. \n',Vcq6);
+Veq8 = Vcq6+Vbe;
+printf('\n This causes a voltage at the emitter of pnp transistor Qr i.e Veq8 = %.1f V. \n',Veq8);
+Ieq8 = (Vcc-Veq8)/R8;
+printf(' The emitter current of Q8 i.e Ieq8 = %d mA. \n',Ieq8);
+Va = -Vee + Ieq8*Ra;
+printf('\n The voltage Va at the collector of Q8 i.e Vcq8 or the base of Q9 i.e Vbq9 = %.1f V. \n',Va);
+printf(' Since the emitter of Q9 will be 0.7 V below the base terminal, \n the voltage at the output terminal 6 is 0 V as is expected.');
+
+Vo = 0; // output voltage(Volts)
+Ieq9 = (Vo-(-Vee))/R9;
+printf('\n\n The emitter current of Q9 i.e Ieq9 = %d mA. \n',Ieq9);
+
+printf('\n\n//////////////////////////a.c. analysis///////////////////////////\n\n');
+
+h_ie1 = (h_fe*Vt)/(I/2);
+printf(' The ac emitter resistance of the transistor Q1-Q2 is h_ie = %.1f kΩ. \n',h_ie1);
+h_ie5 = (h_fe*Vt)/(Icq7/2);
+printf(' The ac emitter resistance of the transistor Q5-Q6 is h_ie = %.1f kΩ. \n',h_ie5);
+RL1 = (1/R1 + 1/h_ie5)^-1;
+printf(' Since, emitter of Q5-Q6 is at ground potential under ac conditions,\n the effective load for Q1-Q2 is RL1 = RL2 = %.1f kΩ.\n',RL1);
+ADM1 = (h_fe*RL1)/h_ie1;
+printf(' The voltage gain of first differential stage is ADM1 = %d. \n',ADM1);
+ADM2 = (-1/2)*(h_fe*R6)/h_ie5;
+printf(' The voltage gain of second differential stage is ADM2 = (approximately) %d. \n',ADM2);
+A3 =-Ra/R8;
+printf(' The gain of the level translator stage is A3 = %.2f. \n',A3);
+printf(' The last stage is emitter follower, so its voltage gain Av4 = (approximately) 1.');
+Av4 = 1;
+Av = ADM1 * ADM2 * A3 * Av4;
+printf('\n\n So, the overall voltage gain is Av = %d. \n',Av);
|