diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3556/CH11/EX11.4/Ex11_4.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3556/CH11/EX11.4/Ex11_4.sce')
-rw-r--r-- | 3556/CH11/EX11.4/Ex11_4.sce | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/3556/CH11/EX11.4/Ex11_4.sce b/3556/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..09e4ec7ec --- /dev/null +++ b/3556/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,55 @@ +clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 2 : AC Circuits
+// Chapter 11 : AC power Analysis
+// Example 11 - 4
+
+clear; clc; close; // Clear the work space and console.
+//
+// Given data
+I_mag_1 = 4.0000; // I_mag_1 = Magnitude of Source Current 4 Ampere for Mesh 1
+I_angle_1 = 0.0000; // I_angle_1 = Angle of Source Current 0 Degree for Mesh 1
+I_mag_2 = 10.5800; // I_mag_2 = Magnitude of Source Current 10.58 Ampere for Mesh 2
+I_angle_2 = 79.1000; // I_angle_2 = Angle of Source Current 79.10 Degree for Mesh 2
+V_mag_v = 60.0000; // V_mag_v = Magnitude of Source Voltage 60 Volt
+V_angle_v = 30.0000; // V_angle_v = Angle of Source Voltage 30 Degree
+V_mag_i = 184.9840; // V_mag_i = Magnitude of Source Voltage 184.9840 Volt
+V_angle_i = 6.2100; // V_angle_i = Angle of Source Current 6.2100 Degree
+R2 = 20.0000; // R2 = Resistance of Resistor 20 Ohm
+XL = 10.0000; // XL = Reactance of Inductor 10 Ohm
+XC = 5.0000; // XC = Reactance of Capasitor 5 Ohm
+//
+// Calculations Average Power Generated by The Source Voltage
+P_5 = 0.5000 * V_mag_v* I_mag_2 * cosd(V_angle_v - I_angle_2); // P_5 = Average Power Generated by The Source Voltage
+// Calculations Average Power Generated by The Source Current
+P_1 = -0.5000 * V_mag_i* I_mag_1 * cosd(V_angle_i - I_angle_1); // P_1 = Average Power Generated by The Source Current
+// Calculations Power Absorbed by Resistor
+V_20 = R2 * I_mag_1; // V_20 = Voltage of Resistor 20 Ohm
+P_2 = 0.5000 * V_20 * I_mag_1; // P_2 = Power Absorbed by Resistor 20 Ohm
+// Calculations Power Absorbed by Inductor
+I_mag_1_real = I_mag_1*cosd(I_angle_1); // I_mag_1_real = Real Part of Current for Mesh 1
+I_mag_1_imag = I_mag_1*sind(I_angle_1); // I_mag_1_imag = Imaginary Part of Current for Mesh 1
+I_mag_2_real = I_mag_2*cosd(I_angle_2); // I_mag_2_real = Real Part of Current for Mesh 2
+I_mag_2_imag = I_mag_2*sind(I_angle_2); // I_mag_2_imag = Imaginary Part of Current for Mesh 2
+I_L_10_mag_real = I_mag_1_real - I_mag_2_real; // I_L_10_mag_real = Real Part of Current Through Inductor
+I_L_10_mag_imag = I_mag_1_imag - I_mag_2_imag; // I_L_10_mag_imag = Imaginary Part of Current Through Inductor
+I_L_10_mag = norm(complex(I_L_10_mag_real,I_L_10_mag_imag)); // V_L_10_mag = Magnitude of Current Through Inductor
+V_L_10_mag = XL*I_L_10_mag; // P_3 = Power Absorbed by Inductor
+P_3 = 0.5000 * V_L_10_mag * I_L_10_mag * cosd(90.0000)
+// Calculations Power Absorbed by Capasitor
+V_C_5_mag = norm(complex(I_mag_2_real,I_mag_2_imag))*XC; // V_C_5_mag = Magnitude of Current Through Capasitor
+P_4 = 0.5000 *V_C_5_mag*norm(complex(I_mag_2_real,I_mag_2_imag))*cosd(90.0000); // P_4 = Power Absorbed by Capasitor
+//
+disp("Example 11-4 Solution : ");
+printf(" \n P_1 = Average Power Generated by Source Current = %.3f Watt",P_1)
+printf(" \n P_2 = Average Power Absorbed by Resistor 20 Ohm = %.3f Watt",P_2)
+printf(" \n P_3 = Average Power Absorbed by Inductor 10 Ohm = %.3f Watt",P_3)
+printf(" \n P_4 = Average Power Absorbed by Capasitor 5 Ohm = %.3f Watt",P_4)
+printf(" \n P_5 = Average Power Generated by Source Voltage = %.3f Watt",P_5)
+
+
+
|