diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3526 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3526')
73 files changed, 1032 insertions, 0 deletions
diff --git a/3526/CH10/EX10.6/EX10_6.sce b/3526/CH10/EX10.6/EX10_6.sce new file mode 100644 index 000000000..1b6ab86f5 --- /dev/null +++ b/3526/CH10/EX10.6/EX10_6.sce @@ -0,0 +1,16 @@ +clc;funcprot(0)//EXAMPLE 10.6
+//page 293
+//INITIALISATION OF VARIABLES
+c1=2;..........//NO.of independent Chemical components at 1300 celsius
+p1=1;........//No.of phases at 1300 celsius
+c2=2;........//NO.of independent Chemical components at 1250 celsius
+p2=2;.........//No.of phases at 1250 celsius
+c3=2;.........//NO.of independent Chemical components at 1200 celsius
+p3=1;.......//No.of phases at 1200 celsius
+//CALCULATIONS
+f1=1+c1-p1;...........//Degrees of freedom of both Copper and NIckel at 1300 celsius
+f2=1+c2-p2;...........//Degrees of freedom of both Copper and NIckel at 1250 celsius
+f3=1+c3-p3;..........//Degrees of freedom of both Copper and NIckel at 1200 celsius
+disp(f1,"Degrees of freedom of both Copper and NIckel at 1300 celsius ")
+disp(f2,"Degrees of freedom of both Copper and NIckel at 1250 celsius ")
+disp(f3,"Degrees of freedom of both Copper and NIckel at 1200 celsius ")
diff --git a/3526/CH10/EX10.8/EX10_8.sce b/3526/CH10/EX10.8/EX10_8.sce new file mode 100644 index 000000000..5f70c9cf3 --- /dev/null +++ b/3526/CH10/EX10.8/EX10_8.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 10.8
+//page 295
+// Initialisation of Variables
+%Nia=40;......//no, of grams of nickel in alloy at alla temperature
+%NiL=32;......//Mass of Nickel present in Liquid
+%Nialpha=45;......//Mass of NIckel present in alpha
+//CALCULATIONS
+x=(%Nia-%NiL)/(%Nialpha-%NiL);.....//Mass fraction of alloy in percent
+disp(x,"Mass fraction of alloy in percent:")
+printf("By converting 62percent alpha and 38percent Liquid are present.:")
diff --git a/3526/CH10/EX10.9/EX10_9.sce b/3526/CH10/EX10.9/EX10_9.sce new file mode 100644 index 000000000..f1eb704f1 --- /dev/null +++ b/3526/CH10/EX10.9/EX10_9.sce @@ -0,0 +1,20 @@ +clc;funcprot(0);//EXAMPLE 10.9
+//page 296
+// Initialisation of Variables
+%NiL=37;......// percentage of NI the Liquid contains at 1270 degree celsius
+%NiS=50;........//percentage of NI the Solid contains at 1270 degree celsius
+%NiL2=32;........//percentage of NI the Liquidcontains at 1250 degree celsius
+%NiS2=45;........//percentage of NI the Solid contains at 1250 degree celsius
+%NiS3=40;........//percentage of NI the Solid contains at 1200 degree celsius
+%NiL3=40;.......//percentage of NI the Liquid contains at 1300 degree celsius
+//CALCULATIONS
+%L=((%NiS-%NiL3)/(%NiS-%NiL))*100;......//Percentage of Liquid at 1270 degree celsius
+%S=((%NiS3-%NiL)/(%NiS-%NiL))*100;.......//Percentage of Solid qt 1270 degree celsius
+%L2=((%NiS2-%NiL3)/(%NiS2-%NiL2))*100;....//Percentage of Liquid at 1250 degree celsius
+%S2=((%NiS3-%NiL2)/(%NiS2-%NiL2))*100;....//Percentage of Solid qt 1250 degree celsius
+printf("At 1300 degree celsius only one phase so 100 percent Liquid")
+disp(round(%L),"Percentage of Liquid at 1270 degree celsius :")
+disp(round(%S),"Percentage of Solid qt 1270 degree celsius:")
+disp(round(%L2),"Percentage of Liquid at 1250 degree celsius :")
+disp(round(%S2),"Percentage of Solid at 1250 degree celsius:")
+printf("At 1200 degree celsius only one phase so 100 percent Solid ")
diff --git a/3526/CH11/EX11.2/EX11_2.sce b/3526/CH11/EX11.2/EX11_2.sce new file mode 100644 index 000000000..ce3e211e8 --- /dev/null +++ b/3526/CH11/EX11.2/EX11_2.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 11.2
+//page 319
+// Initialisation of Variables
+%Sn=2;......//Amount of Tin Dissolved in alpha solid solution
+%Sn2=10;.....//Amount of Tin Dissolved in alpha+beeta solid solution at 0 degree celsius
+m=100;........//Total mass of the Pb-Sn alloy in gm
+Pbm=90;.......//Total mass of the Pb in Pb-Sn alloy in gm
+//CALCULATIONS
+B=((%Sn2-%Sn)/(m-%Sn))*100;.......//The amount of beeta Sn that forms if a Pb-10% Sn alloy is cooled to 0 Degree celsius
+B2=100-B;......//The amount of alpha Sn that forms if a Pb-10% Sn alloy is cooled to 0 Degree celsius
+Sn1=(%Sn/100)*(B2);......//The mass of Sn in the alpha phase in g
+Sn2=%Sn2-Sn1;.....//The mass of Sn in beeta phase in g
+Pb1=B2-Sn1;....//The mass of Pb in the alpha phase in g
+Pb2=Pbm-Pb1;.........//The mass of Pb in the beeta phase in g
+disp(B,"c.Amount of beeta forms of Pb-Sn in gm:")
+disp(Sn1,"d.The mass of Sn in the alpha phase in g:")
+disp(Sn2,"d.The mass of Sn in beeta phase in g:")
+disp(Pb1,"e.The mass of Pb in the alpha phase in g:")
+disp(Pb2,"e.The mass of Pb in the beeta phase in g:")
diff --git a/3526/CH11/EX11.3/EX11_3.sce b/3526/CH11/EX11.3/EX11_3.sce new file mode 100644 index 000000000..b07ea38a2 --- /dev/null +++ b/3526/CH11/EX11.3/EX11_3.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 11.3
+//page 321
+// Initialisation of Variables
+M=200;........//Mass of alpha phase of alloy in gm
+%Sn=61.9;......//Percentage of the Sn in the eutectic alloy in percent
+%Pb=19;.......//Percentage of the Pb in the alpha phase in percent
+%Pb2=97.5;.....//Percentage of the Sn in the beeta phase in percent
+//CALCULLATIONS
+W1=(%Pb2-%Sn)/(%Pb2-%Pb);.....//Weight fraction of alpha phase
+W2=(%Sn-%Pb)/(%Pb2-%Pb);.......//Weight fraction of beeta phase
+Ma=M*W1;......//The mass of the alpha phase in 200g in g
+Mb=M-Ma;......//The amount of the beeta phase in g at 182 degree celsius
+MPb1=Ma*(1-(%Pb/100));.......//Mass of Pb in the alpha phase in g
+MSn1=Ma-MPb1;......//Mass of Sn in alpha phase
+MPb2=Mb*(1-(%Pb2/100));.....//Mass of Pb in beeta phase
+MSn2=123.8-MSn1;.....//mass of Sn in beeta Phase
+disp(W1,"Weight fraction of alpha phase")
+disp(W2,"Weight fraction of beeta phase")
+disp(Ma,"The mass of the alpha phase in 200g in g:")
+disp(Mb,"The amount of the beeta phase in g at 182 degree celsius:")
+disp(MPb1,"Mass of Pb in the alpha phase in g:")
+disp(MSn1,"Mass of Sn in alpha phase")
+disp(MPb2,"Mass of Pb in beeta phase:")
+disp(MSn2,"mass of Sn in beeta Phase:")
diff --git a/3526/CH11/EX11.5/EX11_5.sce b/3526/CH11/EX11.5/EX11_5.sce new file mode 100644 index 000000000..0c0cb09b4 --- /dev/null +++ b/3526/CH11/EX11.5/EX11_5.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 11.3
+//page 325
+// Initialisation of Variables
+%Sn=61.9;......//Percentage of the Sn in the eutectic alloy in percent
+%Pb=19;.......//Percentage of the Pb in the alpha phase in percent
+%Sn2=30;....//Percentage of the Sn in the eutectic alloy in percent
+//CALCULATIONS
+%Pa=(%Sn-%Sn2)/(%Sn-%Pb);......//The amount of compositions of primary alpha in Pb-Sn
+%L=(%Sn2-%Pb)/(%Sn-%Pb);......//The amount of composition of eutectic in Pb-Sn
+disp(round(%Pa*100),"The amount of compositions of primary alpha in Pb-Sn:")
+disp(round(%L*100),"The amount of composition of eutectic in Pb-Sn:")
diff --git a/3526/CH11/EX11.6/Ex11_6.sce b/3526/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..fecb1b251 --- /dev/null +++ b/3526/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,8 @@ +//Example 11.6 +//page 330 +clc +per_L_200=((40-18)/(55-18))*100 +Per_L_210=((40-17)/(50-17))*100 +disp(per_L_200,"L200 in percentage") +disp(Per_L_210,"L210 in percentage") +//answer variation is due to round off
\ No newline at end of file diff --git a/3526/CH12/EX12.1/EX12_1.sce b/3526/CH12/EX12.1/EX12_1.sce new file mode 100644 index 000000000..91b7e714f --- /dev/null +++ b/3526/CH12/EX12.1/EX12_1.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 12.1
+//page 347
+// Initialisation of Variables
+r1=0.111;......//Rate of copper in min^-1 at 135 degree celsius
+r2=0.004;.......//Rate of copper in min^-1 at 88 degree celsius
+T1=408;.......//Temperature in K
+T2=361;.......//Temperature in K
+R=1.987;......//Gas constant
+Q=20693;.......//Change in Rates
+slope=(log(r1)-log(r2))/((1/T1)-(1/T2));....//Slope of the straight line ploted ln(Growth rate) as a function of 1=T,
+A=r1/(exp(-Q/(R*T1)));.....//Constant
+disp(A,"Constant A=")
+disp(slope,"Slpoe of the straight line -Q/R")
diff --git a/3526/CH12/EX12.10/EX12_10.sce b/3526/CH12/EX12.10/EX12_10.sce new file mode 100644 index 000000000..7c071c013 --- /dev/null +++ b/3526/CH12/EX12.10/EX12_10.sce @@ -0,0 +1,8 @@ +clc;funcprot(0);//EXAMPLE 12.10
+//page 366
+// Initialisation of Variables
+%M=0.60;.......//Percentage of Carbon in Martensite at 750 degree celsius
+%a=50;......//Percentage of Carbon in Austenite at 750 degree celsius
+%c=0.02;......//Percentage of Carbon atoms in Steel
+X=(%a/100)*(%M-%c)+%c;......//The carbon content of Steel in percentage
+disp(X,"The carbon content of hypoeutectoid Steel in percentage:")
diff --git a/3526/CH12/EX12.3/EX12_5.sce b/3526/CH12/EX12.3/EX12_5.sce new file mode 100644 index 000000000..1b2ec14a0 --- /dev/null +++ b/3526/CH12/EX12.3/EX12_5.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 12.5
+//page 357
+// Initialisation of Variables
+%Fe=6.67;......//Carbon percentage in Cementite
+%G=0.77;.......//Carbon percentage in peralite in composition
+%A=0.0218;......//Carbon percentage in Ferrite
+//CALCULATIONS
+%ferrite=((%Fe-%G)/(%Fe-%A))*100;........//Amount of ferrite present in peralite
+%C=((%G-%A)/(%Fe-%A))*100;.......//Amount of Cementite present in peralite
+disp(%ferrite,"Amount of ferrite present in peralite:")
+disp(%C,"Amount of Cementite present in peralite:")
diff --git a/3526/CH12/EX12.7/EX12_7.sce b/3526/CH12/EX12.7/EX12_7.sce new file mode 100644 index 000000000..5c7f3c633 --- /dev/null +++ b/3526/CH12/EX12.7/EX12_7.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 12.7
+//page 359
+// Initialisation of Variables
+%A=0.0218;......//Carbon percentage in primary alpha in percent
+%Fe=6.67;......//Carbon percentage in Cementite in percent
+%G=0.77;.......//Carbon percentage in eutectoid composition at 727 degree celsius
+%C=0.60;...//Carbon percentage in Pearlite in percent
+//CALCULATIONS
+%alpha=((%Fe-%C)/(%Fe-%A))*100;.......// Composition of Phase Ferrite in alloy
+%Ce=((%C-%A)/(%Fe-%A))*100;.......//Composition of Cementite in percent in alloy
+%PF=((%G-%C)/(%G-%A))*100;......//Percentage of microconstituents Primary Ferrite in alloy
+%P=((%C-%A)/(%G-%A))*100;.......//Percentage of microconstituents Pearlite in alloy
+disp(%alpha,"Composition of Phase Ferrite in alloy :")
+disp(%Ce,"Composition of Cementite in percent in alloy:")
+disp(%PF,"Percentage of microconstituents Primary Ferrite in alloy:")
+disp(%P,"Percentage of microconstituents Pearlite in alloy:")
diff --git a/3526/CH12/EX12.8/EX12_8.sce b/3526/CH12/EX12.8/EX12_8.sce new file mode 100644 index 000000000..c8bd7b102 --- /dev/null +++ b/3526/CH12/EX12.8/EX12_8.sce @@ -0,0 +1,8 @@ +clc;funcprot(0);//EXAMPLE 12.8
+//page 364
+// Initialisation of Variables
+d=0.001;........//Actual distence between one alpha plate to next alpha plate
+S=14;..........//Spacings between between one alpha plate to next alpha plate
+//CALCULATIONS
+lamida=d/S;......//The interlamellar spacing between one alpha plate to next alpha plate in Pearlite Microstructure
+disp(lamida,"The interlamellar spacing between one alpha plate to next alpha plate in Pearlite Microstructure:")
diff --git a/3526/CH13/EX13.1/EX13_1.sce b/3526/CH13/EX13.1/EX13_1.sce new file mode 100644 index 000000000..6d1492477 --- /dev/null +++ b/3526/CH13/EX13.1/EX13_1.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 13.1
+//page 380
+// Initialisation of Variables
+%Fe=6.67;......//Carbon percentage in Cementite by weight
+%G=0.77;.......//Carbon percentage in eutectoid composition in steel by weight
+%A=0.0218;......//Carbon percentage in Ferrite
+%Fe3C=16;....//Percentage of alpha ferrite in steel
+%P=95;......//Percentage of Pearlite in Steel
+//CALCULATIONS
+X1=((%Fe3C/100)*(%Fe-%A))+%A;.....//Carbon content present in Steel
+X2=%Fe-((%P/100)*(%Fe-%G));.....//Carbon content present in Steel
+disp(X1,"Carbon content present in Steel:")
+disp(X2,"Carbon content present in Steel:")
+printf("The carbon content is on the order of 1.065 to 1.086 percent, consistent with a 10110 steel")
diff --git a/3526/CH13/EX13.3/Ex13_3.sce b/3526/CH13/EX13.3/Ex13_3.sce new file mode 100644 index 000000000..446df843b --- /dev/null +++ b/3526/CH13/EX13.3/Ex13_3.sce @@ -0,0 +1,7 @@ +//page 385 +clc +primary_alpha=((0.77-.5)/(0.77-0.0218))*100 +pearlite=((0.5-0.0218)/(0.77-0.0218))*100 +disp(primary_alpha,"primary alpha in percentage =") +disp(pearlite,"pearlite in percentage =") +//Answer difference is due to roundoff
\ No newline at end of file diff --git a/3526/CH14/EX14.1/EX14_1.sce b/3526/CH14/EX14.1/EX14_1.sce new file mode 100644 index 000000000..ddedaa42d --- /dev/null +++ b/3526/CH14/EX14.1/EX14_1.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 14.1
+//page 427
+// Initialisation of Variables
+d1=0.5;..........//Diameter of a steel Cable in in.
+rhoy=70000;........//Yield Strength of Steel Cable in psi
+rhoa1=36000;........//Yield Strength of Aluminum in psi
+rhos=0.284;..........//Density of Steel in lb/in^3
+rhoa2=0.097;.........//Density of Aluminum in lb/in^3
+//CALCULATIONS
+F=rhoy*((%pi/4)*(d1^2));........//Load applied on Aluminum in lb
+d2=sqrt((F/rhoa1)*(4/(%pi)));.......//Diameter of Aluminum in in.
+Ws=(%pi/4)*(d1^2)*12*rhos;..........//Weight of Steel in lb/ft
+Wa=(%pi/4)*(d2^2)*12*rhoa2;..........//Weight of Aluminum in lb/ft
+disp(F,"a. Load applied on Aluminum in lb:")
+disp(d2,"b. Diameter of Aluminum in in.: ")
+disp(Ws,"c. Weight of Steel in lb/ft:")
+disp(Wa,"Weight of Aluminum in lb/ft:")
diff --git a/3526/CH15/EX15.1/EX15_1.sce b/3526/CH15/EX15.1/EX15_1.sce new file mode 100644 index 000000000..c872f7f64 --- /dev/null +++ b/3526/CH15/EX15.1/EX15_1.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 15.1
+//page 459
+// Initialisation of Variables
+rho=3.2;.............//Specific Gravity of SiC in g/cm^2
+Ww=385;.............//Weight of Ceramic when dry in g
+Wd=360;.............//Weight of Ceramic after Soaking in water in g
+Ws=224;.............//Weight of Ceramic Suspended in water in g
+//CALCULATIONS
+A=((Ww-Wd)/(Ww-Ws))*100;..........//Apparent Porosity in percent
+B=(Wd)/(Ww-Ws);..........//Bulk Density of Ceramic
+T=((rho-B)/rho)*100;.......//True Porosity of Ceramic in Percent
+C=T-A;..............//Closed pore percent of ceramic
+F=C/T;..............//Fraction Closed Pores of Ceramic
+disp(A,"Apparent Porosity in percent:")
+disp(B,"Bulk Density of Ceramic:")
+disp(T,"True Porosity of Ceramic in Percent:")
+disp(F,"Fraction Closed Pores of Ceramic:")
diff --git a/3526/CH15/EX15.2/EX15_2.sce b/3526/CH15/EX15.2/EX15_2.sce new file mode 100644 index 000000000..af83d3f86 --- /dev/null +++ b/3526/CH15/EX15.2/EX15_2.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 15.2
+//page 462
+// Initialisation of Variables
+R=2.5;..........//Ratio of O to Si in SiO2
+W1=69.62;........//Weight of B2O3 in g/ml
+W2=60.08;........//Weight of SiO2 in g/ml
+//CALCULATIONS
+Fb1=(R-2)/3.5;...........//Mole Fraction of B2O3
+Fb2=1-Fb1;.........//Mole fraction of SiO2
+Wp=((Fb1*W1)/((Fb1*W1)+(Fb2*W2)))*100;.......//Weight Percent of B2O3
+disp(Fb1,"Mole Fraction of B2O3:")
+disp(Wp,"Weight Percent of B2O3:")
diff --git a/3526/CH16/EX16.2/EX16_2.sce b/3526/CH16/EX16.2/EX16_2.sce new file mode 100644 index 000000000..02e2cb8d3 --- /dev/null +++ b/3526/CH16/EX16.2/EX16_2.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 16.2
+//page 482
+// Initialisation of Variables
+W=28;...............//Molecular weight of Ethylene in g/mol
+W1=200000;............//Molecular weight of Benzoyl Peroxide in g/mol
+W2=1000;............//Weight of Polyethylene in gm
+W3=242;.............//Molecular Weight of Benzoyl Peroxide in g/mol
+//Calculations
+DP=W1/W;..............// Degree of Polymerization
+n=(W2*6.02*10^23)/W;..............//No. of Monomers present
+M=n/DP;......................//NO. of Benzoyl Peroxide Molecules to be present
+Ai=(M*W3)/6.02*10^23;............//Amount of Initiator needed in gm
+disp(DP,"Degree of Polymerization :")
+disp(n,"No. of Monomers present :")
+disp(M,"NO. of Benzoyl Peroxide Molecules to be present:")
+disp(Ai,"Amount of Initiator needed in gm:")
diff --git a/3526/CH16/EX16.3/EX16_3.sce b/3526/CH16/EX16.3/EX16_3.sce new file mode 100644 index 000000000..62711b295 --- /dev/null +++ b/3526/CH16/EX16.3/EX16_3.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 16.3
+//page 484
+// Initialisation of Variables
+W1=116;................//Molecular Weight of Hexamethylene Diamine in g/mol
+W2=146;................//Molecular Weight of Adipic Acid in g/mol
+W3=18;.................//Molecular Weight of Water in g/mol
+W=1000;................//Weight of Hexamethylene Diamine in gm
+//Calculations
+N=W/W1;................//No. of Moles of Hexamethylene Diamine
+X=N*W2;................//Weight of Adipic Acid required
+Y=N*W3;................//Weight of Water in gm
+N2=W+X-2*Y;.............//Amount of Nylon Produced
+disp(N2,"Amount of Nylon Produced:")
diff --git a/3526/CH16/EX16.4/EX16_4.sce b/3526/CH16/EX16.4/EX16_4.sce new file mode 100644 index 000000000..a322ecd52 --- /dev/null +++ b/3526/CH16/EX16.4/EX16_4.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 16.4
+//page 486
+// Initialisation of Variables
+W1=116;................//Molecular Weight of Hexamethylene Diamine in g/mol
+W2=146;................//Molecular Weight of Adipic Acid in g/mol
+W3=18;.................//Molecular Weight of Water in g/mol
+W4=120000;.............//Molecular Weight of 6,6-nylon in g/mol
+//alculations
+M=W1+W2-2*W3;..........//Molecular Weight of the repeated unit
+DOP=W4/M;...............//Degree of Polymerization of 6,6-nylon
+disp(DOP,"Degree of Polymerization of 6,6-nylon:")
diff --git a/3526/CH16/EX16.7/EX16_7.sce b/3526/CH16/EX16.7/EX16_7.sce new file mode 100644 index 000000000..cd5c44336 --- /dev/null +++ b/3526/CH16/EX16.7/EX16_7.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 16.7
+//page 499
+// Initialisation of Variables
+M=56;.........//Molecular Weight of Polyethylene
+P=0.88;........//Measured density of PolyethyleneInitial
+P1=0.915;........//Measured density of Polyethylene Final
+Pa=0.87;........//Density of Amorphous Polyethylene
+//Caluculations
+Pc=M/(7.42*4.95*(2.55*10^-24)*6.02*10^23);...........//Density of complete Crystalline polymer
+Cp1= ((Pc/P)*((P-Pa)/(Pc-Pa)))*100;..................//Crystallinity of Polyethylene initial
+Cp2= ((Pc/P1)*((P1-Pa)/(Pc-Pa)))*100;................//Crystallinity of Polyethylene final
+disp(Pc,"Density of Crystalline polymer:")
+disp(Cp1,"Crystall. of Polyethylene initial:")
+disp(Cp2,"Crystall. of Polyethylene final:")
diff --git a/3526/CH16/EX16.9/EX16_9.sce b/3526/CH16/EX16.9/EX16_9.sce new file mode 100644 index 000000000..fe9c18f29 --- /dev/null +++ b/3526/CH16/EX16.9/EX16_9.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 16.7
+//page 500
+//INITIALISATION OF VAREIABLES
+sig1=980;...............//Initial Stress of POlyisoprene in psi
+sig2=1000;.............//Fnal Stress of POlyisoprene in psi
+sig3=1500;.............// Stress of POlyisoprene after one year in psi
+t1=6;................//time in weeks
+t2=52;.............//time in weeks
+//CALCULATIONS
+Rt=-t1/(log(sig1/sig2));.....//Relaxation time in weeks
+sig=sig3/(%e^(-t2/Rt));........//Initial Stress to be placed in psi
+disp(round(Rt),"Relaxation time in weeks:")
+disp(round (sig),"Initial Stress to be placed in psi:")
diff --git a/3526/CH17/EX17.1/EX17_1.sce b/3526/CH17/EX17.1/EX17_1.sce new file mode 100644 index 000000000..a86653b48 --- /dev/null +++ b/3526/CH17/EX17.1/EX17_1.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 17.1
+//page 527
+// Initialisation of Variables
+per1=2;.............//Percent weight of ThO2
+per2=98;..............//Percentage weight of Nickle
+rho1=9.69;...........//Density of ThO2 in g/cm^3
+rho2=8.9;............//Density of Nickel in g/cm^3
+r=0.5*10^-5;........//Radius of ThO2 particle in cm
+//calculations
+f=(2/rho1)/((per1/rho1)+(per2/rho2));.........//Volume fraction of ThO2 per cm^3 of composite
+v=(4/3)*(%pi)*r^3;...........//Volume of ech ThO2 sphere in cm^3
+c=f/v;.................//Concentration of ThO2 particles in particles/cm^3
+disp(c,"Concentration of ThO2 in particles/cm^3:")
diff --git a/3526/CH17/EX17.10/EX17_10.sce b/3526/CH17/EX17.10/EX17_10.sce new file mode 100644 index 000000000..841a74820 --- /dev/null +++ b/3526/CH17/EX17.10/EX17_10.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 17.10
+//page 554
+// Initialisation of Variables
+psi=500000;...............//Modulus Elasticity of Epoxyin psi
+f=500;.....................//Force applied on Epoxy in pounds
+q=0.10;....................//Stretchable distence in in.
+rho=0.0451;..................//Density of Epoxy in lb/in^3
+d=1.24;....................//Diameter of Epoxy in in
+e=12000;....................//Yeild Strngth of Epoxy in psi
+E2=77*10^6;................//Modulus of high Carbon Fiber in psi
+Fc=0.817;..................//Volume fraction of Epoxy remaining
+Fc2=0.183;..................//Min volume Faction of Epoxy
+rho2=0.0686;...............//Density of high Carbon Fiber in lb/in^3
+emax=q/120;................//MAX. Strain of Epoxy
+E=psi*emax;................//Max Modulus of elasticity in psi
+A=f/E;....................//Area of Structure in in^2
+W=rho*%pi*((d/2)^2)*120;...........//Weight of Structure in ib
+c=W*0.80;..........................//Cost of Structure in Dollars
+Ec=e/emax;..................//Minimum Elasticity of composite in psi
+A2=f/e;....................//Area of Epoxy in in^2
+At=A2/Fc;................//Total Volume of Epoxy
+V=At*120;................//Volume of Structure in in^3
+W2=((rho2*Fc2)+(rho*Fc))*V;.............//Weight of Structure in lb
+Wf=(Fc2*1.9)/((Fc2*1.9)+(Fc*1.25));...........//Weight Fraction of Carbon
+Wc=Wf*W2;.....................//Weight of Carbon
+We=0.746*W2;.................//Weight of Epoxy
+c2=(Wc*30)+(We*0.80);.............//Cost of Each Struct.
+ disp(c2,"Cost of Each Struct.:")
diff --git a/3526/CH17/EX17.2/EX17_2.sce b/3526/CH17/EX17.2/EX17_2.sce new file mode 100644 index 000000000..9a852f14a --- /dev/null +++ b/3526/CH17/EX17.2/EX17_2.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 17.2
+//page 528
+// Initialisation of Variables
+per1=75;..............//Percent Weight of WC
+per2=15;..............//Percent Weight of TiC
+per3=5;...............//Percent Weight of TaC
+per4=5;...............//Percent Weight of Co
+rho1=15.77;...........//Density of WC in g/cm^3
+rho2=4.94;............//Density of TiC in g/cm^3
+rho3=14.5;............//Density of TaC in g/cm^3
+rho4=8.90;............//Density of Co in g/cm^3
+//Calculations
+f1=(per1/rho1)/((per1/rho1)+(per2/rho2)+(per3/rho3)+(per4/rho4));.......//Volume fraction of WC
+f2=(per2/rho2)/((per1/rho1)+(per2/rho2)+(per3/rho3)+(per4/rho4));.....//Volume fraction of Tic
+f3=(per3/rho3)/((per1/rho1)+(per2/rho2)+(per3/rho3)+(per4/rho4));.....//Volume fraction of Tac
+f4=(per4/rho4)/((per1/rho1)+(per2/rho2)+(per3/rho3)+(per4/rho4));.....//Volume fraction of Co
+rho=(f1*rho1)+(f2*rho2)+(f3*rho3)+(f4*rho4);........//Density of composite in g/cm^3
+disp(rho,"Density of composite in g/cm^3:")
diff --git a/3526/CH17/EX17.3/EX17_3.sce b/3526/CH17/EX17.3/EX17_3.sce new file mode 100644 index 000000000..b5bb51ba9 --- /dev/null +++ b/3526/CH17/EX17.3/EX17_3.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 17.3
+//page 530
+// Initialisation of Variables
+rho1=19.3;...........//Density of pure Tungsten in g/cm^3
+rho2=10.49;............//Density of pure Silver in g/cm^3
+f1=0.75;..............//Volume fraction of Tungsten
+f2=0.25;...........//Volume fraction of Silver and pores
+//Calculations
+per=((f2*rho2)/((f2*rho2)+(f1*rho1)))*100;.........//Percentage weight of silver
+disp(per,"Percentage Weight of Silver:")
diff --git a/3526/CH17/EX17.4/EX17_4.sce b/3526/CH17/EX17.4/EX17_4.sce new file mode 100644 index 000000000..a1709e71f --- /dev/null +++ b/3526/CH17/EX17.4/EX17_4.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 17.4
+//page 531
+// Initialisation of Variables
+rho1=0.95;...........//Density of polyethylene in g/cm^3
+rho2=2.4;...........//Density of clay in g/cm^3
+f1=0.65;...............//Volume fraction of Polyethylene
+f2=0.35;...............//Volume fraction of Clay
+f3=1.67;.............//Volume fraction of polyethylene after sacrifice
+f4=1.06;.............//Volume fraction of Clay after sacrifice
+pa1=650;............// No. of parts of polyethylene in 1000cm^3 composite in cm^3
+pa2=350;............// No. of parts of clay in 1000cm^3 composite in cm^3
+//Calculations
+pa3=(pa1*rho1)/454;.........//No. of parts of Polyethylene in 1000cm^3 composite in lb
+pa4=(pa2*rho2)/454;.........//No. of parts of clay in 1000cm^3 composite in lb
+co1=pa3* 0.05;................//Cost of material Polyethylenein Dollars
+co2=pa4* 0.05;................//Cost of materials clay in Dollars
+c0=co1+co2;...................//Cost of materials in Dollars
+rho3=(f1*rho1)+(f2*rho2);.........//Composite density in g/cm^3
+co3=f3* 0.05;................//Cost of material polyethylene after savings in Dollars
+co4=f4* 0.05;................//Cost of material clay after savings in Dollars
+c1=co3+co4;.................//Cost of materials after savings in Dollars
+rho4=(0.8*rho1)+(0.2*rho2);..............//Density of composite after saving in g/cm^3
+disp(rho3,"Composite density in g/cm^3:")
+disp(rho4,"Composite densityafter saving in g/cm^3:")
+
diff --git a/3526/CH17/EX17.7/EX17_7.sce b/3526/CH17/EX17.7/EX17_7.sce new file mode 100644 index 000000000..2683fa7d9 --- /dev/null +++ b/3526/CH17/EX17.7/EX17_7.sce @@ -0,0 +1,20 @@ +clc;funcprot(0);//EXAMPLE 17.7
+// Initialisation of Variables
+//page 536
+f1=0.4;...............//Volume fraction of Fiber
+f2=0.6;...............//Volume fraction of Aluminium
+rho1=2.36;...........//Density of Fibers in g/cm^3
+rho2=2.70;...........//Density of Aluminium in g/cm^3
+psi1=55*10^6;..............//Modulus of elasticity of Fiber in psi
+psi2=10*10^6;..............//Modulus of elasticity of Aluminium in psi
+ts1=400000;..............//Tensile strength of fiber in psi
+ts2=5000;..............//Tensile strength of Aluminium in psi
+//Calculations
+rho=(f1*rho1)+(f2*rho2);........//Density of mixture in g/cm^3
+Ec1=(f1*psi1)+(f2*psi2);........//Modulus of elasticity of mixture in psi
+TSc=(f1*ts1)+(f2*ts2);........//Tensile Strength of mixture in psi
+Ec2=1/((f1/psi1)+(f2/psi2));........//Modulus of elasticity perpendicular to fibers in psi
+disp(rho,"Density of mixture in g/cm^3:")
+disp(Ec1,"Modulus of elasticity of mixture in psi:")
+disp(TSc,"Tensile Strength of mixture in psi:")
+disp(Ec2,"Modulus of elasticity perpendicular to fibers in psi:")
diff --git a/3526/CH17/EX17.8/EX17_8.sce b/3526/CH17/EX17.8/EX17_8.sce new file mode 100644 index 000000000..1010d68cf --- /dev/null +++ b/3526/CH17/EX17.8/EX17_8.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 17.8
+//page 534
+// Initialisation of Variables
+psi1=10.5*10^6;..............//Modulus of elasticity of Glass in psi
+psi2=0.4*10^6;..............//Modulus of elasticity of Nylon in psi
+a1=0.3;.....................//area of glass in cm^3
+a2=0.7;.....................//area of Nylon in cm^3
+//Calculations
+psi=psi1/psi2;..............//Fraction of elasticity
+fo=a1/(a1+(a2*(1/psi)));..........//Fraction of applied force carried by Glass fiber
+disp(fo,"Fraction of applied force carried by Glass fiber :")
+printf(" Almost all of the load is carried by the glass fibers.")
diff --git a/3526/CH17/EX17.9/EX17_9.sce b/3526/CH17/EX17.9/EX17_9.sce new file mode 100644 index 000000000..1214dfb62 --- /dev/null +++ b/3526/CH17/EX17.9/EX17_9.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 17.9
+//page 542
+// Initialisation of Variables
+psi=10*10^6;..............//Modulus of elasticity of 7075-T6 in psi
+psi1=55*10^6;..............//Modulus of elasticity of Boron fiber in psi
+psi2=11*10^6;..............//Modulus of elasticity of Typical AL-LI in psi
+f1=0.6;...............//Volume fraction of Boron Fiber
+f2=0.4;...............//Volume fraction of typical AL-LI
+rho1=0.085;...........//Density of Boron Fibers in lb/in*3
+rho2=0.09;...........//Density of typical AL-LI in lb/in^3
+//Calculations
+sm1=psi/(((2.7*(2.54)^3))/454);..........//Specific Modulus of current alloy in in.
+rho=(f1*rho1)+(f2*rho2);........//Density of composite in lb/in^3
+Ec=(f1*psi1)+(f2*psi2);........//Modulus of elasticity of mixture in psi
+sm2=Ec/rho;..........//Specific Modulus of composite in in.
+disp(sm1,"Specific Modulus of current alloy in in.:")
+disp(rho,"Density of composite in lb/in^3:")
+disp(Ec,"Modulus of elasticity of mixture in psi:")
+disp(sm2,"Specific Modulus of composite in in.:")
diff --git a/3526/CH2/EX2.1/EX2_1.sce b/3526/CH2/EX2.1/EX2_1.sce new file mode 100644 index 000000000..9ad3b1c2d --- /dev/null +++ b/3526/CH2/EX2.1/EX2_1.sce @@ -0,0 +1,10 @@ +//Page 26
+clc;funcprot(0);//EXAMPLE 2.1
+// Initialisation of Variables
+r=1.5*10^-7;........//Radius of a particle in cm
+rho=7.8;..........//Density of iron magnetic nano- particle in cm^3
+//CALCULATIONS
+v=(4/3)*%pi*(r)^3;.....//Volume of each Iron magnetic nano -particle in cm^3
+m=rho*v;.......//Mass of each iron nano-particle in g
+disp(v,"Volume of each Iron magnetic nano -particle in cm^3:")
+disp(m,"Mass of each iron nano-particle in g:")
diff --git a/3526/CH2/EX2.4/EX2_4.sce b/3526/CH2/EX2.4/EX2_4.sce new file mode 100644 index 000000000..cad80bf07 --- /dev/null +++ b/3526/CH2/EX2.4/EX2_4.sce @@ -0,0 +1,8 @@ +//Page 37
+clc;funcprot(0);//EXAMPLE 2.4
+// Initialisation of Variables
+Es=1.8;........//Electro negativity of Silicon from fig.2-8
+Eo=3.5;........//Electro negativity of Oxygen from fig.2-8
+//CALCULATION
+F=exp(-0.25*(Eo-Es)^2);........//Fraction covalent of SiO2
+disp(F,"Fraction covalent of SiO2 :")
diff --git a/3526/CH3/EX3.1/EX3_1.sce b/3526/CH3/EX3.1/EX3_1.sce new file mode 100644 index 000000000..fc5ab1007 --- /dev/null +++ b/3526/CH3/EX3.1/EX3_1.sce @@ -0,0 +1,13 @@ +//page 53
+clc;funcprot(0);//EXAMPLE 3.1
+// Initialisation of Variables
+Cn=8;......//No. of Corners of the Cubic Crystal Systems
+c=1;......//No. of centers of the Cubic Crystal Systems in BCC unit cell
+F=6;.......//No. of Faces of the Cubic Crystal Systems in FCC unit cell
+//CALCULATIONS
+N1=Cn/8;.....//No. of latice points per unit cell in SC unit cell
+N2=(Cn/8)+c*1;....//No. of latice points per unit cell in BCC unit cells
+N3=(Cn/8)+F*(1/2);....//No. of latice points per unit cell in FCC unit cells
+disp(N1,"No. of latice points per unit cell in SC unit cell:")
+disp(N2,"No. of latice points per unit cell in BCC unit cells:")
+disp(N3,"No. of latice points per unit cell in FCC unit cells:")
diff --git a/3526/CH3/EX3.11/EX3_11.sce b/3526/CH3/EX3.11/EX3_11.sce new file mode 100644 index 000000000..77fb17232 --- /dev/null +++ b/3526/CH3/EX3.11/EX3_11.sce @@ -0,0 +1,7 @@ +//page 70
+clc;funcprot(0);//EXAMPLE 3.11
+// Initialisation of Variables
+E=12;......//No. of Edges in the octahedral sites of the unit cell
+S=1/4;.......//so only 1/4 of each site belongs uniquelyto each unit cell
+N=E*S+1;.....//No.of site belongs uniquely to each unit cell
+disp(N,"No.of octahedral site belongs uniquely to each unit cell:")
diff --git a/3526/CH3/EX3.12/EX3_12.sce b/3526/CH3/EX3.12/EX3_12.sce new file mode 100644 index 000000000..c32d221a1 --- /dev/null +++ b/3526/CH3/EX3.12/EX3_12.sce @@ -0,0 +1,14 @@ +//page 72
+clc;funcprot(0);//EXAMPLE 3.12
+// Initialisation of Variables
+r1=0.066;.......//Radius of Mg+2 from Appendix B in nm
+r2=0.132;.......//Radius of O-2 from Appendix B in nm
+Am1=24.312;.......//Atomic masses of Mg+2 in g/mol
+Am2=16;.......//Atomic masses of O-2 in g/mol
+Na=6.02*10^23;......//Avogadro’s number
+//CALCULATIONS
+a0=2*r1+2*r2;...........//Lattice constant for MgO in nm
+rho=((4*Am1)+(4*16))/((a0*10^-8)*Na);.....//Density of MgO in g/cm^3
+disp(a0*10^-8,"Lattice constant for MgO in cm:")
+disp(rho,"Density of MgO in g/cm^3:")
+//Answer given in the book is wrong
\ No newline at end of file diff --git a/3526/CH3/EX3.13/EX3_13.sce b/3526/CH3/EX3.13/EX3_13.sce new file mode 100644 index 000000000..1cc2d0a9b --- /dev/null +++ b/3526/CH3/EX3.13/EX3_13.sce @@ -0,0 +1,10 @@ +//page 75
+clc;funcprot(0);//EXAMPLE 3.13
+// Initialisation of Variables
+r=1;............//Radius of each atom in units
+n=8;.........//No. of atoms present in Diamond cubic Silicon per cell
+//CALCULATIONS
+v=(4/3)*%pi*r^3;..........// Volume of each atom in Diamond cubic Silicon
+a0=(8*r)/sqrt(3);..........//Volume of unit cell in Diamond cubic Silicon
+Pf=(n*v)/a0^3;............//Packing factor of Diamond cubic Silicon
+disp(Pf,"Packing factor of Diamond cubic Silicon:")
diff --git a/3526/CH3/EX3.3/EX3_3.sce b/3526/CH3/EX3.3/EX3_3.sce new file mode 100644 index 000000000..56c0c9094 --- /dev/null +++ b/3526/CH3/EX3.3/EX3_3.sce @@ -0,0 +1,8 @@ +//page 56
+clc;funcprot(0);//EXAMPLE 3.14
+// Initialisation of Variables
+r=1;.........// one unit of radius of each atom of FCC cell
+a0=(4*r)/sqrt(2);..........//Lattice constant for FCC cell
+v=(4*%pi*r^3)/3;.........//volume of one atom in FCC cell
+Pf=(4*v)/(a0)^3;........//Packing factor in FCC cell
+disp(Pf,"Packing factor in FCC cell")
diff --git a/3526/CH3/EX3.4/EX3_4.sce b/3526/CH3/EX3.4/EX3_4.sce new file mode 100644 index 000000000..c4ede0491 --- /dev/null +++ b/3526/CH3/EX3.4/EX3_4.sce @@ -0,0 +1,12 @@ +//page 57
+clc;funcprot(0);//EXAMPLE 3.4
+// Initialisation of Variables
+a0=2.866*10^-8;..........//Lattice constant for BCC iron cells in cm
+m=55.847;..........//Atomic mass of iron in g/mol
+Na=6.02*10^23;......//Avogadro’s number in atoms/mol
+n=2;.........//number of atoms per cell in BCC iron
+//CALCULATIONS
+v=a0^3;........//Volume of unit cell for BCC iron in cm^3/cell
+rho=(n*m)/(v*Na);.......//Density of BCC iron
+disp(v,"Volume of unit cell for BCC iron in cm^3/cell:")
+disp(rho,"Density of BCC iron in g/cm^3:")
diff --git a/3526/CH3/EX3.5/EX3_5.sce b/3526/CH3/EX3.5/EX3_5.sce new file mode 100644 index 000000000..4ba1279c8 --- /dev/null +++ b/3526/CH3/EX3.5/EX3_5.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 3.5
+// Initialisation of Variables
+a=5.156;........//The lattice constants for the monoclinic unit cells in Angstroms
+b=5.191;........//The lattice constants for the monoclinic unit cells in Angstroms
+c=5.304;........//The lattice constants for the monoclinic unit cells in Angstroms
+beeta=98.9;.......//The angle fro the monoclinic unit cell
+a2=5.094;........//The lattice constants for the tetragonal unit cells in Angstroms
+c2=5.304;........//The lattice constants for the tetragonal unit cells in Angstroms
+//CALCULATIONS
+v2=(a2^2)*c2;........//volume of a tetragonal unit cell
+v1=a*b*c*sin(beeta*%pi/180);........//volume of a monoclinic unit cell
+Pv=(v1-v2)/(v1)*100;........//The percent change in volume in percent
+disp(v2,"volume of a tetragonal unit cell in A^3:")
+disp(v1,"volume of a monoclinic unit cell in A^3:")
+disp(Pv,"The percent change in volume in percent:")
+//valu of pv is wrong in book
diff --git a/3526/CH3/EX3.8/EX3_8.sce b/3526/CH3/EX3.8/EX3_8.sce new file mode 100644 index 000000000..7aaf58890 --- /dev/null +++ b/3526/CH3/EX3.8/EX3_8.sce @@ -0,0 +1,12 @@ +//page 64
+clc;funcprot(0);//EXAMPLE 3.8
+// Initialisation of Variables
+r=1;.......//Radius of each atom in units
+l=0.334;.......//Lattice parameter of (010) in nm
+//CALCULATIONS
+a1=2*r;........//Area of face for (010)
+a2=l^2;...........//Area of face of (010) in cm^2
+pd=1/a2;........//Planar density of (010) in atoms/nm^2
+pf=%pi*r^2/(a1)^2;......//Packing fraction of (010)
+disp(pd*10^14,"Planar density of (010) in atoms/cm^2:")
+disp(pf,"Packing fraction of (010):")
diff --git a/3526/CH4/EX4.1/EX4_1.sce b/3526/CH4/EX4.1/EX4_1.sce new file mode 100644 index 000000000..0c46cbb4f --- /dev/null +++ b/3526/CH4/EX4.1/EX4_1.sce @@ -0,0 +1,13 @@ +//page 87
+clc;funcprot(0);//EXAMPLE 4.1
+// Initialisation of Variables
+Lp=0.36151;........//The lattice parameter of FCC copper in nm
+T1=298;..........//Temperature of copper in K
+Qv=20000;...........//Heat required to produce a mole of vacancies in copper in cal
+R=1.987;.........//The gas constant in cal/mol-K
+//CALCULATIONS
+n=4/(Lp*10^-8)^3;..........//The number of copper atoms or lattice points per cm^3 in atoms/cm^3
+nv1=n*exp(-Qv/(T1*R));.......//concentration of vacancies in copper at 25 degree celsius in vacancies /cm^3
+nv2=nv1*1000;.......//concentration of vacancies in copper atoms at T2 temperature
+T2=-Qv/(R*log(nv2/n));.......//temperature at which this number of vacancies forms in copper in K
+disp(round(T2-273),"Temperature at which this number of vacancies forms in copper in Degree celsius:")
diff --git a/3526/CH4/EX4.2/EX4_2.sce b/3526/CH4/EX4.2/EX4_2.sce new file mode 100644 index 000000000..61c3e2ef3 --- /dev/null +++ b/3526/CH4/EX4.2/EX4_2.sce @@ -0,0 +1,16 @@ +//page 88
+clc;funcprot(0);//EXAMPLE 4.2
+// Initialisation of Variables
+n1=2;..........//No. of Atoms in BCC iron Crystal
+m=55.847;..........//Atomic mass of BCC iron crystal
+a0=2.866*10^-8;......//The lattice parameter of BCC iron in cm
+Na=6.02*10^23;.......//Avogadro’s number in atoms/mol
+rho1=7.87;........//Required density of iron BCC in g/cm^3
+//CALCULATIONS
+rho2=(n1*m)/(a0^3*Na);..........//The expected theoretical density of iron BCC
+X=(rho1*a0^3*Na)/m;.........//Number of iron atoms and vacancies that would be present in each unit cell for the required density
+n2=n1-X;..........// no. of vacacies per unit cell
+V=n2/a0^3;.........//The number of vacancies per cm^3
+disp(rho2,"The expected theoretical density of iron BCC ")
+disp(X,"Number of iron atoms that would be present in each unit cell for the required density:")
+disp(V,"The number of vacancies per cm^3 :")
diff --git a/3526/CH4/EX4.3/EX4_3.sce b/3526/CH4/EX4.3/EX4_3.sce new file mode 100644 index 000000000..bdb8eb638 --- /dev/null +++ b/3526/CH4/EX4.3/EX4_3.sce @@ -0,0 +1,21 @@ +//page 90
+clc;funcprot(0);//EXAMPLE 4.3
+// Initialisation of Variables
+a01=0.2866;............//The Lattice parameter of BCC in nm
+a02=0.3571;............//The Lattice parameter of FCC in nm
+r=0.071;............//Radius of carbon atom in nm
+ni1=12;..........//No. of interstitial sites per unit cell for BCC
+ni2=4;...........//No. of interstitial sites per unit cell for FCC
+//CALCULATIONS
+Rb=(sqrt(3)*a01)/4;.......//Radius of iron atom in nm
+Ri1=sqrt(0.3125*a01^2)-Rb;.......// Interstitial Radius of iron atom in nm
+Rf=(sqrt(2)*a02)/4;.........//the radius of the iron atom in nm
+Ri2=(a02-(2*Rf))/2;................//the radius of the interstitial site in nm
+%C1=(ni1/(ni1+2))*100;...........//The atomic percentage of carbon contained in the BCC iron in percent
+%C2=(ni2/(ni2+4))*100;...........//The atomic percentage of carbon contained in the FCC iron in percent
+disp(Rb,"Radius of iron atom in nm")
+disp(Ri1,"Interstitial Radius of iron atom in nm:")
+disp(Rf,"the radius of the iron atom in nm:")
+disp(Ri2,"the radius of the interstitial site in nm:")
+disp(%C1,"The atomic percentage of carbon contained in BCC iron in percent:")
+disp(%C2,"The atomic percentage of carbon contained in FCC iron in percent:")
diff --git a/3526/CH4/EX4.4/EX4_4.sce b/3526/CH4/EX4.4/EX4_4.sce new file mode 100644 index 000000000..b88232c14 --- /dev/null +++ b/3526/CH4/EX4.4/EX4_4.sce @@ -0,0 +1,10 @@ +//page 96
+clc;funcprot(0);//EXAMPLE 4.4
+// Initialisation of Variable
+a0=0.396;.........//Lattice parameter of magnesium oxide
+h=1;..............//Because b is a [110] direction
+k=1;..............//Because b is a [110] direction
+l=0;............//Because b is a [110] direction
+//CALCULATIONS
+b=a0/sqrt(2);..........//The length of Burgers vector in nm
+disp(b,"The length of Burgers vector in nm:")
diff --git a/3526/CH4/EX4.5/EX4_5.sce b/3526/CH4/EX4.5/EX4_5.sce new file mode 100644 index 000000000..f1caaefd1 --- /dev/null +++ b/3526/CH4/EX4.5/EX4_5.sce @@ -0,0 +1,9 @@ +//page 97
+clc;funcprot(0);//EXAMPLE 4.5
+// Initialisation of Variables
+a01=0.36151;......//The lattice parameter of copper in nm
+//CALCULATIONS
+F=sqrt(2)*a01;........//Face Diagonal of copperin nm
+b=(1/2)*(F);..........//The length of the Burgers vector, or the repeat distance in nm
+disp(F,"Face Diagonal of copperin nm:")
+disp(b,"The length of the Burgers vector in nm:")
diff --git a/3526/CH4/EX4.6/EX4_6.sce b/3526/CH4/EX4.6/EX4_6.sce new file mode 100644 index 000000000..69da0514e --- /dev/null +++ b/3526/CH4/EX4.6/EX4_6.sce @@ -0,0 +1,14 @@ +//page 98
+clc;funcprot(0);//EXAMPLE 4.6
+// Initialisation of Variables
+n=2;........//No. of Atoms present per cell in BCC
+a0=2.866*10^-8;.....//The lattice parameter of BCC iron in cm
+rho1=0.994*10^15;.......//Planar density of (112)BCC in atoms/cm^2
+//CALCULATIONS
+a=sqrt(2)*a0^2;.........//Area of BCC iron in cm^2
+rho2=n/a;........//Planar density of (110)BCC in atoms/cm^2
+d1=a0*10^-9/(sqrt(1^2+1^2+0));......//The interplanar spacings for (110)BCC in cm
+d2=a0*10^-9/(sqrt(1^2+1^2+2^2));......//The interplanar spacings for (112)BCC in cm
+disp(rho2,"Planar density of (110)BCC in atoms/cm^2:")
+disp(d1,"The interplanar spacings for (110)BCC in cm:")
+disp(d2,"The interplanar spacings for (112)BCC in cm:")
diff --git a/3526/CH4/EX4.9/EX4_9.sce b/3526/CH4/EX4.9/EX4_9.sce new file mode 100644 index 000000000..12be5d1d7 --- /dev/null +++ b/3526/CH4/EX4.9/EX4_9.sce @@ -0,0 +1,8 @@ +//page 105
+clc;funcprot(0);//EXAMPLE 4.10
+// Initialisation of Variables
+g=16;.......// No. of grains per square inch in a photomicrograph
+M=250;..........//Magnification in a photomicrograph
+N=(M/g)*100;........//The number of grains per square inch
+n=(log10(100)/log10(2))+1;........//the ASTM grain size number
+disp(n,"the ASTM grain size number:")
diff --git a/3526/CH5/EX5.2/EX5_2.sce b/3526/CH5/EX5.2/EX5_2.sce new file mode 100644 index 000000000..86ee51470 --- /dev/null +++ b/3526/CH5/EX5.2/EX5_2.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 5.2
+//page 119
+// Initialisation of Variables
+R1=5*10^8;.........//The rate of moement of interstitial atoms in jumps/s 500 degree celsius
+R2=8*10^10;.........//The rate of moement of interstitial atoms in jumps/s 800 degree celsius
+T1=500;..........//Temperature at first jump in Degree celsius
+T2=800;..........//Temperature at second jump in Degree celsius
+R=1.987;..........//Gas constant in cal/mol-K
+//CALCULATIONS
+Q=log(R2/R1)/(exp(1/(R*(T1+273)))-exp(1/(R*(T2+273))));.....//Activation Energy for Interstitial Atoms in cal/mol
+disp(Q,"Activation Energy for Interstitial Atoms in cal/mol:")
+//answer in book is wrong
diff --git a/3526/CH5/EX5.3/EX5_3.sce b/3526/CH5/EX5.3/EX5_3.sce new file mode 100644 index 000000000..39381b2b6 --- /dev/null +++ b/3526/CH5/EX5.3/EX5_3.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 5.3
+//page 124
+// Initialisation of Variables
+X=0.1;.......//Thickness of SIlicon Wafer in cm
+n=8;.......//No. of atoms in silicon per cell
+ni=1;..........//No of phosphorous atoms present for every 10^7 Si atoms
+ns=400;.......//No of phosphorous atoms present for every 10^7 Si atoms
+ci1=(ni/10^7)*100;..........//Initial compositions in atomic percent
+cs1=(ns/10^7)*100;...........//Surface compositions in atomic percent
+G1=(ci1-cs1)/X;.....//concentration gradient in percent/cm
+a0=1.6*10^-22;........//The lattice parameter of silicon
+v=(10^7/n)*a0;......//volume of the unit cell in cm^3
+ci2=ni/v;..........//The compositions in atoms/cm^3
+cs2=ns/v;..........//The compositions in atoms/cm^3
+G2=(ci2-cs2)/X;.....//concentration gradient in percent/cm^3.cm
+disp(G1,"concentration gradient in percent/cm:")
+disp(G2,"concentration gradient in percent/cm^3.cm:")
diff --git a/3526/CH5/EX5.4/EX5_4.sce b/3526/CH5/EX5.4/EX5_4.sce new file mode 100644 index 000000000..f8032dc78 --- /dev/null +++ b/3526/CH5/EX5.4/EX5_4.sce @@ -0,0 +1,27 @@ +clc;funcprot(0);//EXAMPLE 5.4
+//page 129
+// Initialisation of Variables
+N=1;..........//N0. of atoms on one side of iron bar
+H=1;..........//No. of atoms onother side of iron bar
+d=3;.......//Diameter of an impermeable cylinder in cm
+l=10;.....//Length of an impermeable cylinder in cm
+A1=50*10^18*N;..........// No. of gaseous Atoms per cm^3 on one side
+A2=50*10^18*H;..........//No. of gaseous Atom per cm^3 on one side
+B1=1*10^18*N;...........//No. of gaseous atoms per cm^3 on another side
+B2=1*10^18*H;..........//No. of gaseous atoms per cm^3 on another side
+t=973;...........//The di¤usion coefficient of nitrogen in BCC iron at 700 degree celsius in K
+Q=18300;.........//The activation energy for di¤usion of Ceramic
+Do=0.0047;.......//The pre-exponential term of ceramic
+R=1.987;.........//Gas constant in cal/mol.K
+//CALCULATIONS
+T=A1*(%pi/4)*d^2*l;....//The total number of nitrogen atoms in the container in N atoms
+LN=0.01*T/3600;......//The maximum number of atoms to be lost per second in N atoms per Second
+JN=LN/((%pi/4)*d^2);.........//The Flux of ceramic in Natoms per cm^2. sec.
+Dn=Do*exp(-Q/(R*t));........//The di¤usion coefficient of Ceramic in cm^2/Sec
+deltaX=Dn*(A1-B1)/JN;.........//minimum thickness of the membrane in cm
+LH=0.90*T/3600;........//Hydrogen atom loss per sec.
+JH=LH/((%pi/4)*d^2);.........//The Flux of ceramic in Hatoms per cm^2. sec.
+Dh=Do*exp(-Q/(R*t));........//The di¤usion coeficient of Ceramic in cm^2/Sec
+deltaX2=((1.86*10^-4)*(A2-B2))/JH;.......//Minimum thickness of the membrane in cm
+disp(deltaX,"Minimum thickness of the membrane of Natoms in cm")
+disp(deltaX2,"Minimum thickness of the membrane of Hatoms in cm")
diff --git a/3526/CH5/EX5.5/EX5_5.sce b/3526/CH5/EX5.5/EX5_5.sce new file mode 100644 index 000000000..7e83657fd --- /dev/null +++ b/3526/CH5/EX5.5/EX5_5.sce @@ -0,0 +1,32 @@ +clc;funcprot(0);//EXAMPLE 5.6
+// Initialisation of Variables
+n=2;..........//no of atoms/ cell in BCC Tungsten
+a0=3.165;..........//The lattice parameter of BCC tungsten in Angstromes
+W=n/(a0*10^-8)^3;.........//The number of tungsten atoms per cm^3
+Cth=0.01*W;......//The number of thorium atoms per cm^3
+Cg=-Cth/0.01;.......//The concentration gradient of Tungsten in atoms/cm^3.cm
+Q=120000;.........//The activation energy for diffusion of Tungsten
+Q2=90000;.........//The activation energy for diffusion of Tungsten
+Q3=66400;.........//The activation energy for diffusion of Tungsten
+Do=1.0;.......//The pre-exponential term of Tungsten
+Do2=0.74;.......//The pre-exponential term of Tungsten
+Do3=0.47;.......//The pre-exponential term of Tungsten
+R=1.987;.........//Gas constant in cal/mol.K
+t=2273;..........//The diffusion coefficient of nitrogen in BCC iron at 2000 degree celsius in K
+//CALCULATIONS
+D1=Do*exp(-Q/(R*t));........//The diffusion coeficient of Tungsten in cm^2/Sec
+J1=-D1*Cg;............//Volume Diffusion in Th atoms/cm^2.sec.
+D2=Do2*exp(-Q2/(R*t));........//The diffusion coeficient of Tungsten in cm^2/Sec
+J2=-D2*Cg;............//Grain boundary Diffusion in Th atoms/cm^2.sec.
+D3=0.47*exp(-66400/(1.987*2273));........//The diffusion coeficient of Tungsten in cm^2/Sec
+J3=-D3*Cg;............//Surfae Diffusion in Th atoms/cm^2.sec.
+
+disp(W,"The number of tungsten atoms per cm^3:")
+disp(Cth,"The number of thorium atoms per cm^3:")
+disp(Cg,"The concentration gradient of Tungsten in atoms/cm^3.cm:")
+disp(D1,"The diffusion coeficient of Tungsten in cm^2/Sec:")
+disp(J1,"Volume Diffusion in Th atoms/cm^2.sec.:")
+disp(D2,"The diffusion coeficient of Tungsten in cm^2/Sec:")
+disp(J2,"Grain boundry Diffusion in Th atoms/cm^2.sec.:")
+disp(D3*10^7,"The Surface diffusion coeficient of Tungsten in cm^2/Sec:")
+disp(J3,"Surface Diffusion in Th atoms/cm^2.sec.:")
diff --git a/3526/CH5/EX5.6/Ex5_6.sce b/3526/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..96cef7bde --- /dev/null +++ b/3526/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,12 @@ +//Example 5.6 +//page 155 +clc +T=[1173 1273 1373 1473] +//in K + +//for loop t + +for i=1:1:4 +t(i)=0.0861/exp(-16558/T(i)) +end +disp(t,"The combination temp in second is") diff --git a/3526/CH5/EX5.7/Ex5_7.sce b/3526/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..84926d0f1 --- /dev/null +++ b/3526/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,13 @@ +//Example 5.6
+//page 155
+clc
+T=[1173 1273 1373 1473]
+//in K
+
+
+//for loop t
+
+for i=1:1:4
+t(i)=0.0861/exp(-16558/T(i))
+end
+disp(t,"The combination temp in second is")
diff --git a/3526/CH5/EX5.8/EX5_8.sce b/3526/CH5/EX5.8/EX5_8.sce new file mode 100644 index 000000000..c744c2dcf --- /dev/null +++ b/3526/CH5/EX5.8/EX5_8.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 5.8
+// Initialisation of Variables
+H=10;.......//Required time to successfully carburize a batch of 500 steel gears
+t1=1173;......//Temperature at carburizing a batch of 500 steel gears in K
+t2=1273;.......//Temperature at carburizing a batch of 500 steel gears in K
+Q=32900;.........//The activation energy for diffusion of BCC steel
+R=1.987;.........//Gas constant in cal/mol.K
+c1=1000;......//cost per hour to operate the carburizing furnace at 900degree centigrades
+c2=1500;......//Cost per hour to operate the carburizing furnace at 1000 degree centigrade
+H2=(exp(-Q /(R*t1))*H*3600)/exp(-Q /(R*t2));.......// Time requried to successfully carburize a batch of 500 steel gears at 1000 degree centigrade
+Cp1=c1*H/500;.......//The cost per Part of steel rods at 900 degree centigrade
+Cv=(c2*3.299)/500;.......//The cost per Part of steel rods at 1000 degree centigrade
+disp(H2/3600,"Time requried to successfully carburize a batch of 500 steel gears at 1000 degree centigrade:")
+disp(Cp1,"The cost of carburizing per Part of steel rods at 900 degree centigrade")
+disp(Cv,"The cost of carburizing per Part of steel rods at 1000 degree centigrade")
diff --git a/3526/CH6/EX6.1/Ex6_1.sce b/3526/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..9a7d0b28f --- /dev/null +++ b/3526/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,10 @@ +//page 152 +clc +F=1000//in lb +Ao=(%pi/4)*(0.505)^2//in^2 +rho=F/Ao +delta_I=0.001//in +I_o=2//in +e=delta_I/I_o +disp(rho,"The value in psi is=") +disp(e,"The value of epselon")
\ No newline at end of file diff --git a/3526/CH6/EX6.2/EX6_2.sce b/3526/CH6/EX6.2/EX6_2.sce new file mode 100644 index 000000000..79cd35b7d --- /dev/null +++ b/3526/CH6/EX6.2/EX6_2.sce @@ -0,0 +1,20 @@ +clc;funcprot(0);//EXAMPLE 6.2
+//page 152
+// Initialisation of Variables
+F=45000;.......//Force applied on an aluminum rod in lb
+e=25000;.......//the maximum allowable stress on the rod in psi
+l2=150;.......//the minimum length of the rod in in
+e1=0.0025;......//The strain appiled on rod
+sigma=16670;.........//Stress applied on rod in psi
+L=0.25;........//The maximum allowable elastic deformation in in
+//CALCULATIONS
+Ao1=F/e;........//The required crosssectional area of the rod
+d=sqrt((Ao1*4)/%pi);......//Diameter of rod in in
+l1=e1*L;...........//The maximum length of the rod in in
+e2=L/e1;...........//The minimum strain allowed on rod
+Ao2=F/sigma;........//The minimum cross-sectional area in in^2
+disp(Ao1,"The required crosssectional area of the rod in in^2:")
+disp(d,"Diameter of rod in in:")
+disp(l1,"The maximum length of the rod in in:")
+disp(e2,"The minimum strain allowed on rod:")
+disp(Ao2,"The minimum cross-sectional area in in^2:")
diff --git a/3526/CH6/EX6.3/EX6_3.sce b/3526/CH6/EX6.3/EX6_3.sce new file mode 100644 index 000000000..0e8b824ae --- /dev/null +++ b/3526/CH6/EX6.3/EX6_3.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 6.3
+// Initialisation of Variables
+sigma1=35000;.......//Stress applied of aluminum alloy in psi from table 6-1
+e1=0.0035;........//Strain applied of aluminum alloy from table 6-1
+sigma2=30000;.......//Stress applied of aluminum alloy in psi
+Lo=50;.........//initial length of aluminum alloy
+//CALCULATIONS
+E=sigma1/e1;........//Modulus of elasticity of aluminum alloy
+e2=sigma2/E;.......//Strain applied of aluminum alloy
+L=Lo+(e2*Lo);......//The length after deformation of bar in in
+disp(E,"Modulus of elasticity of aluminum alloy from table 6-1:")
+disp(L,"The length after deformation of bar in in")
+disp(e2,"Strain applied of aluminum alloy:")
diff --git a/3526/CH6/EX6.4/EX6_4.sce b/3526/CH6/EX6.4/EX6_4.sce new file mode 100644 index 000000000..1f90c0d38 --- /dev/null +++ b/3526/CH6/EX6.4/EX6_4.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 6.4
+// Initialisation of Variables
+Lf=2.195;........//Final length after failure
+d1=0.505;.......//Diameter of alluminum alloy in in
+d2=0.398;......//Final diameter of alluminum alloy in in
+Lo=2;..........//Initial length of alluminum alloy
+//CALCULATIONS
+A0=(%pi/4)*d1^2;........//Area of original of alluminum alloy
+Af=(%pi/4)*d2^2;........//Area of final of alluminum alloy
+%E=((Lf-Lo)/Lo)*100;.....//Percentage of Elongation
+%R=((A0-Af)/A0)*100;......//Percentage of Reduction in area
+disp(%E,"Percentage of Elongation:")
+disp(%R,"Percentage of Reduction in area:")
+printf("The final length is less than 2.205 in because, after fracture, the elastic strain is recovered.")
diff --git a/3526/CH6/EX6.5/EX6_5.sce b/3526/CH6/EX6.5/EX6_5.sce new file mode 100644 index 000000000..58f87b797 --- /dev/null +++ b/3526/CH6/EX6.5/EX6_5.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 6.5
+// Initialisation of Variables
+F=8000;.......//Load applied for the aluminum alloy in lb
+F2=7600;......//Load applied for the aluminum alloy in lb at fracture
+dt1=0.505;.......//diameter of for the aluminum alloy in in
+dt2=0.497;.......//The diameter at maximum load
+Lt=2.120;..........//Final length at maxium load
+Lot=2;.............//Initial length of alluminum alloy
+Ff=7600;.........//Load applied for the aluminum alloy after fracture in lb
+df=0.398;.......//The diameter at maximum load after fracture
+Lf=0.205;.......//Final length at fracture
+//CALCULATIONS
+Es=F/((%pi/4)*dt1^2);.....//Engineering stress in psiAt the tensile or maximum load
+Ts=F/((%pi/4)*dt2^2);.....//True stress in psi At the tensile or maximum load
+Ee=(Lt-Lot)/Lot;........//Engineering strain At the tensile or maximum load
+Te=log(Lt/Lot);........//True strain At the tensile or maximum load
+Es2=F2/((%pi/4)*dt1^2);......//Engineering stress At fracture:
+Ts2=F2/((%pi/4)*df^2);......//True stress At fracture:
+Ee2=Lf/Lot;..........//Engineering strain At fracture:
+Te2=log(((%pi/4)*dt1^2)/((%pi/4)*df^2));.......//True strain At fracture:
+disp(Es,"Engineering stress in psiAt the tensile or maximum load")
+disp(Ts,"True stress in psi At the tensile or maximum load")
+disp(Ee,"Engineering strain At the tensile or maximum load")
+disp(Te,"True strain At the tensile or maximum load")
+disp(Es2,"Engineering stress At fracture:")
+disp(Ts2,"True stress At fracture")
+disp(Ee2,"Engineering strain At fracture:")
+disp(Te2,"True strain At fracture:")
diff --git a/3526/CH6/EX6.6/EX6_6.sce b/3526/CH6/EX6.6/EX6_6.sce new file mode 100644 index 000000000..1ba52c4e8 --- /dev/null +++ b/3526/CH6/EX6.6/EX6_6.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 6.6
+// Initialisation of Variables
+Fs=45000;.......//The flexural strength of a composite material in psi
+Fm=18*10^6;........//The flexural modulus of composite material in psi
+w=0.5;.......//wide of sample in in
+h=0.375;......//Height of sample in in
+l=5;..........//Length of sample in in
+//CALCULATIONS
+F=Fs*2*w*h^2/(3*l);......//The force required to fracture the material in lb
+delta=(l^3)*F/(Fm*4*w*h^3);.......//The deflection of the sample at fracture
+disp(F,"The force required to fracture the material in lb:")
+disp(delta,"The deflection of the sample at fracture in in")
diff --git a/3526/CH7/EX7.1/EX7_1.sce b/3526/CH7/EX7.1/EX7_1.sce new file mode 100644 index 000000000..cf13a6b41 --- /dev/null +++ b/3526/CH7/EX7.1/EX7_1.sce @@ -0,0 +1,9 @@ +clc;funcprot(0);//EXAMPLE 7.1
+//page 181
+// Initialisation of Variables
+f=1.12;.......//Geometry factor for the specimen and flaw
+sigma=45000;.....//Applied stress on Steel in psi
+K=80000;.........//The stress intensity factor
+//CALCULATIONS
+a=(K/(f*sigma))^2/%pi;........//Depth of crank in in
+disp(a,"Depth of crank that will propagate in the steel in in:")
diff --git a/3526/CH7/EX7.11/EX7_11.sce b/3526/CH7/EX7.11/EX7_11.sce new file mode 100644 index 000000000..421c80341 --- /dev/null +++ b/3526/CH7/EX7.11/EX7_11.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 7.11
+//page 199
+// Initialisation of Variables
+N=5.256*10^5;......//No. of cycles that the shaft will experience in one year
+F=12500;.........//applied load on shaft in lb
+L=96;...........//Length of Kliin produced from tool steel in in.
+sigma1=72000;...........//the applied stress on Shaft
+f=2;............//Factor of saftey of shaft
+sigma2=sigma1/f;......//the maximum allowed stress level
+//CALCULATIONS
+d1=(16*F*L/(sigma1*%pi))^(1/3);..........//The Diameter of Shaft in in.
+d2=(16*F*L/(sigma2*%pi))^(1/3);.......//The minimum diameter required to prevent failure
+disp(d1,"The Diameter of Shaft in in.:")
+disp(d2,"The minimum diameter required to prevent failure in in.:")
diff --git a/3526/CH7/EX7.2/EX7_2.sce b/3526/CH7/EX7.2/EX7_2.sce new file mode 100644 index 000000000..955d28ce4 --- /dev/null +++ b/3526/CH7/EX7.2/EX7_2.sce @@ -0,0 +1,9 @@ +clc;funcprot(0);//EXAMPLE 7.2
+//page 183
+// Initialisation of Variables
+T=60000;........//Tensile strength Of Sialon (acronym for silicon aluminum oxynitride) in psi
+sigma=500;.....//The stress at which the part unexpectedly fails in psi
+a=0.01;.........//Depth of thin crack in in
+//CALCULATIONS
+r=a/(T/(2*sigma))^2;.....//The radius of the crack tip in in
+disp(r*2.54*10^8,"The radius of the crack tip in Angstroms")
diff --git a/3526/CH7/EX7.3/EX7_3.sce b/3526/CH7/EX7.3/EX7_3.sce new file mode 100644 index 000000000..cd7247f5f --- /dev/null +++ b/3526/CH7/EX7.3/EX7_3.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 7.3
+//page 184
+// Initialisation of Variables
+F=40000;..........// Maximum Tensile load in lb
+K=9000;........//Fracture toughness of Ceramic
+w=3;.........// plate made of Sialon width
+//CALCULATIONS
+A=F*sqrt(%pi)/K;......//Area of ceramic
+T=A/w;........// Thickness of Ceramic
+disp(T,"THickness of ceramic :")
diff --git a/3526/CH7/EX7.8/EX7_8.sce b/3526/CH7/EX7.8/EX7_8.sce new file mode 100644 index 000000000..e269ec695 --- /dev/null +++ b/3526/CH7/EX7.8/EX7_8.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 7.8
+//page 193
+// Initialisation of Variables
+m=9;.........//Weibull modulus of an ceramic
+sigma1=250;.......//The flexural strength in MPa
+F1=0.4;.......//probability of failure
+F2=0.1;.......//Expected the probability of failure
+//CALCULATIONS
+sigma2=exp(log(sigma1)-(log(log(1/(1-F1)))/m ));.....// The characteristic strength of the ceramic
+sigma3=exp((log(log(1/(1-F2)))/m)+log(sigma2));........//Expected level of stress that can be supported in MPa
+disp(sigma2,"The characteristic strength of the ceramic in MPa:")
+disp(sigma3,"Expected level of stress that can be supported in MPa:")
+
diff --git a/3526/CH7/EX7.9/EX7_9.sce b/3526/CH7/EX7.9/EX7_9.sce new file mode 100644 index 000000000..bfc213b78 --- /dev/null +++ b/3526/CH7/EX7.9/EX7_9.sce @@ -0,0 +1,11 @@ +//page 195
+clc;funcprot(0);//EXAMPLE 7.9
+// Initialisation of Variables
+Ln1=0.5
+Ln2=-2.0
+
+sigma1=52;........//the maximum allowed stress level on ceramic at one point in MP.
+sigma2=23.5;.......//the maximum allowed stress level on ceramic at another point in MP.
+//CALCULATIONS
+m=(Ln1-Ln2)/(log(sigma1)-log(sigma2));.......//Weibull modulus of ceramic
+disp(m,"Weibull modulus of ceramic:")
diff --git a/3526/CH8/EX8.1/EX8_1.sce b/3526/CH8/EX8.1/EX8_1.sce new file mode 100644 index 000000000..d36e8feed --- /dev/null +++ b/3526/CH8/EX8.1/EX8_1.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 8.1
+//page 221
+// Initialisation of Variables
+t0=1;.......//Thickness of Copper plate in cm
+tf=0.50;.....//Cold reducetion of coopper in cm in step1
+tf2=0.16;.....// Further Cold reduction of cooper in cm in step2
+//CALCULATIONS
+%CW1=((t0-tf)/t0)*100;......//Amount of Cold work accomplished in step1
+%CW2=((tf-tf2)/tf)*100;.....//Amount of Cold work accomplished in step2
+%CW=((t0-tf2)/t0)*100;.......//Actual Total Cold work in percent
+disp(%CW1,"Amount of Cold work accomplished in step1:")
+disp(%CW2,"Amount of Cold work accomplished in step2:")
+disp(%CW,"Actual Total Cold work in percent:")
diff --git a/3526/CH8/EX8.2/EX8_2.sce b/3526/CH8/EX8.2/EX8_2.sce new file mode 100644 index 000000000..c51c3f09a --- /dev/null +++ b/3526/CH8/EX8.2/EX8_2.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 8.2
+//page 222
+// Initialisation of Variables
+tf=0.1;.......//Thickness of cooper to produce in cm
+%CW1=40;.......//cold work to produce a tensile strengthof 65,000 psi
+%CW2=45;.......//cold work to produce a tensile strengthof 60,000 psi
+//CALCULATIONS
+Tmax=(tf/(1-(%CW1/100)));.........//Maximum thicknessproduced in step1 in cm
+Tmin=(tf/(1-(%CW2/100)));.........//Minimum thicknessproduced in step2 in cm
+disp(Tmax,"Maximum thicknessproduced in cm:")
+disp(Tmin,"Minimum thicknessproduced in cm:")
diff --git a/3526/CH8/EX8.5/EX8_5.sce b/3526/CH8/EX8.5/EX8_5.sce new file mode 100644 index 000000000..caaabb227 --- /dev/null +++ b/3526/CH8/EX8.5/EX8_5.sce @@ -0,0 +1,16 @@ +//EXAMPLE 8.5
+//page 228
+clc;
+// Initialisation of Variables
+D0=0.40;........//Let’s assume that the starting diameter of the copper wire in in.
+Df=0.20;........// Diameter of the copper wire to be produced in in.
+sigma1=22000;..........//Yeidl strength at 0% cold work
+//CALCULATIONS
+CW=((D0^2-Df^2)/D0^2)*100;.........//The fianal Cold Work in percent
+F=sigma1*(%pi/4)*D0^2;........//The draw force required to deform the initial wire in lb
+sigma2=F/((%pi/4)*Df^2);.....// The stress acting on the wire after passing through the die in psi
+disp(CW,"The fianal Cold Work in percent:")
+disp(F,"The draw force required to deform the initial wire in lb:")
+disp(sigma2,"The stress acting on the wire after passing through the die in psi:")
+
+
diff --git a/3526/CH8/EX8.6/EX8_6.sce b/3526/CH8/EX8.6/EX8_6.sce new file mode 100644 index 000000000..f6119340d --- /dev/null +++ b/3526/CH8/EX8.6/EX8_6.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 8.6
+//page 235
+// Initialisation of Variables
+t0=5;.......//Assming we are able to purchase only 5-cm thick stock
+t02=1;......//Thickness of strip in cm
+tf=0.182;......//Final thickness of strip in cm
+%CW2=80;.......//cold work of a strip in percent
+M=1085;.......// The melting point of copper in degree celsius
+//CALCULATIONS
+%CW=((t0-tf)/t0)*100;.......//Cold work between from 5 to 0.182 cm in percent
+tf2=(1-(%CW2/100))*t0;.....// Final Thickness of strip in cm
+Tr=0.4*(M+273);...// Recrystallization temperature By using 0.4Tm relationship in degree celsius
+%CW3=((t02-tf)/t02)*100;.....//Cold work of the strip of 1 cm thickness
+disp(%CW,"Cold work between from 5 to 0.182 cm in percent:")
+disp(tf2,"1. Final Thickness of strip in cm")
+disp(Tr-273,"2. Recrystallization temperature By using 0.4Tm relationship in degree celsius:")
+disp(%CW3,"3. Cold work of the strip of 1 cm thickness :")
diff --git a/3526/CH8/EX8.7/EX8_7.sce b/3526/CH8/EX8.7/EX8_7.sce new file mode 100644 index 000000000..01c59ad7c --- /dev/null +++ b/3526/CH8/EX8.7/EX8_7.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 8.7
+//page 237
+// Initialisation of Variables
+t0=5;.........//We are able to purchase strip of 5cm thickness in cm
+tf=0.182;.....//Thickness to be produced in cm
+tf2=0.167;.......//Thickness to procedure in cm
+//CALCULATIONS
+%HW=((t0-tf)/t0)*100;.....//Hot work for a strip from 5cm to 0.182 cm in percent
+%HW2=((t0-tf2)/t0)*100;......//Hot work for a strip from 5cm to 0.167 cm in percent
+disp(%HW,"Hot work for a strip from 5cm to 0.182 cm in percent:")
+disp(%HW2,"Hot work for a strip from 5cm to 0.167 cm in percent")
diff --git a/3526/CH9/EX9.1/EX9_1.sce b/3526/CH9/EX9.1/EX9_1.sce new file mode 100644 index 000000000..e7ba0180d --- /dev/null +++ b/3526/CH9/EX9.1/EX9_1.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 9.1
+//page 250
+// Initialisation of Variables
+deltaT=236;.......//Typical Undercooling for HomogeneousNucleation from the table 9-1 for cooper
+Tm=1358;.......//Freezing Temperature from the table 9-1 for cooper in degree celsius
+deltaH=1628;.......// Latent Heat of Fusion from the table 9-1 for cooper in J/cm^3
+sigma1=177*10^-7;.....//Solid-Liquid Interfacial Energyfrom the table 9-1 for cooper in J/cm^2
+a0=3.615*10^-8;......//The lattice parameter for FCC copper in cm
+//CALCULATIONS
+r=(2*sigma1*Tm)/(deltaH*deltaT);......//Critical Radius of copper in cm
+V=a0^3;....//Volume of FCC unit cell of copper in cm^3
+V2=(4/3)*%pi*r^3;....//Critical volume of FCC copper
+N=V2/V;......//The number of unit cells in the critical nucleus
+Nc=4*round(N);......//Since there are four atoms in each unit cell of FCC metals
+disp(r*10^8,"Critical Radius of copper in cm:")
+disp(V,"Volume of FCC unit cell of copper in cm^3:")
+disp(V2,"Critical volume of FCC copper :")
+disp(round(N),"The number of unit cells in the critical nucleus :")
+disp(Nc,"Since there are four atoms in each unit cell of FCC metals:")
diff --git a/3526/CH9/EX9.2/EX9_2.sce b/3526/CH9/EX9.2/EX9_2.sce new file mode 100644 index 000000000..8395d5208 --- /dev/null +++ b/3526/CH9/EX9.2/EX9_2.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 9.2
+//page 255
+// Initialisation of Variables
+d=18;//Diameter of the casting in in
+x=2;//Thickness of the casting in in
+B=22//Mold constant of casting
+V=(%pi/4)*d^2;//Volume of the casting in in^3
+A=2*(%pi/4)*d^2+%pi*d*x;//The surface area of the casting in contact with the mold
+x=(0.708*A)/V
+disp(x,"The thickness in inches=")
\ No newline at end of file |