diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3492/CH5 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3492/CH5')
-rw-r--r-- | 3492/CH5/EX5.1/Ex5_1.sce | 23 | ||||
-rw-r--r-- | 3492/CH5/EX5.11/Ex5_11.sce | 32 | ||||
-rw-r--r-- | 3492/CH5/EX5.13/Ex5_13.sce | 12 | ||||
-rw-r--r-- | 3492/CH5/EX5.17/Ex5_17.sce | 12 | ||||
-rw-r--r-- | 3492/CH5/EX5.18/Ex5_18.sce | 23 | ||||
-rw-r--r-- | 3492/CH5/EX5.2/Ex5_2.sce | 10 | ||||
-rw-r--r-- | 3492/CH5/EX5.3/Ex5_3.sce | 21 | ||||
-rw-r--r-- | 3492/CH5/EX5.4/Ex5_4.sce | 10 | ||||
-rw-r--r-- | 3492/CH5/EX5.5/Ex5_5.sce | 24 | ||||
-rw-r--r-- | 3492/CH5/EX5.7/Ex5_7.sce | 19 | ||||
-rw-r--r-- | 3492/CH5/EX5.9/Ex5_9.sce | 19 |
11 files changed, 205 insertions, 0 deletions
diff --git a/3492/CH5/EX5.1/Ex5_1.sce b/3492/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..972a80a68 --- /dev/null +++ b/3492/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,23 @@ +clc
+//Chapter5
+//Ex_1
+//Given
+e=1.6*10^-19 // in coulombs
+h=6.6*10^-34 //in J s
+m=9.1*10^-31 //in Kg
+me=1.08*m
+mh=0.56*m
+T=300 //in Kelvin
+Eg=1.10 // in eV
+ue=1350//in cm2/V/s
+uh=450//in cm2/V/s
+k=1.38*10^-23 //m2 kg s-2 K-1
+Nc=2*((2*%pi*me*k*T)/h^2)^(3/2) //in m^-3
+Nc=Nc*10^-6 //in cm^-3
+Nv=2*((2*%pi*mh*k*T)/h^2)^(3/2) //in m^-3
+Nv=Nv*10^-6 //in cm^-3
+ni=sqrt(Nc*Nv)*exp(-Eg*e/(2*k*T))
+disp(ni,"Intrinsic concentration of Si in cm^-3 is")
+sigma=e*ni*(ue+uh)
+p=1/sigma
+disp(p,"Intrinsic resistivity of Si in ohm cm is")
diff --git a/3492/CH5/EX5.11/Ex5_11.sce b/3492/CH5/EX5.11/Ex5_11.sce new file mode 100644 index 000000000..98d48bd93 --- /dev/null +++ b/3492/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,32 @@ +clc
+//Chapter5
+//Ex_11
+//Given
+//part(a)
+h=6.63*10^-34 //in Js
+c=3*10^8 // in m/s
+e=1.6*10^-19 // in coulombs
+ue=0.034 //in m2/V/s
+uh=0.0018 //in m2/V/s
+t=1*10^-3 // in seconds
+L=1*10^-3 //in m
+D=0.1*10^-3 //in m
+W=1*10^-3 //in m
+I=1// mW/cm^2
+I=I*10^-3*10^4 // conversion of units to W/m^2
+n=1 //quantum efficiency
+lambda=450*10^-9 // in m
+V=50 // in volts
+//part(a)
+A=L*W //in m3
+EHP_ph=(A*n*I*lambda)/(h*c)
+disp(EHP_ph,"No.of EHP/s generated per second is")
+//part(b)
+delta_sigma=e*n*I*lambda*t*(ue+uh)/(h*c*D)
+disp(delta_sigma,"Photo conductivity of the sample in ohm^-1 m^-1 is")
+//part(c)
+A=0.1*10^-6 //m2
+E=V/W
+delta_J=E*delta_sigma
+delta_I=A*delta_J
+disp(delta_I*10^3,"Photocurrent produced in mA is")
diff --git a/3492/CH5/EX5.13/Ex5_13.sce b/3492/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..c820fa507 --- /dev/null +++ b/3492/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,12 @@ +clc
+//Chapter5
+//Ex_13
+//Given
+e=1.6*10^-19 // in coulombs
+T=300//in kelvin
+ue=1300 //in cm2/V/s
+//V=k*T/e
+V=0.0259 //thermal voltage in Volts
+//D=ue*k*T/e
+D=ue*V
+disp(D,"Diffusion coefficient of electrons at room temperature in cm2/s is")
diff --git a/3492/CH5/EX5.17/Ex5_17.sce b/3492/CH5/EX5.17/Ex5_17.sce new file mode 100644 index 000000000..9ef900965 --- /dev/null +++ b/3492/CH5/EX5.17/Ex5_17.sce @@ -0,0 +1,12 @@ +clc
+//Chapter5
+//Ex_17
+//Given
+Eg=1.42 //in eV
+//letE=hc/lambda=hf
+E=1.96 //in eV
+P_L=50 //in mW
+kT=0.0259 // in eV
+delta_E=E-(Eg+(3/2)*kT)
+P_H=(P_L/(E))*delta_E
+disp(P_H,"Amount of power dissipated as heat in mW is")
diff --git a/3492/CH5/EX5.18/Ex5_18.sce b/3492/CH5/EX5.18/Ex5_18.sce new file mode 100644 index 000000000..da69b5af2 --- /dev/null +++ b/3492/CH5/EX5.18/Ex5_18.sce @@ -0,0 +1,23 @@ +clc
+//Chapter5
+//Ex_18
+//Given
+phi_m=4.28 //in eV
+e=1.6*10^-19 // in coulombs
+X=4.01 //in eV
+kT=0.026 // in eV
+Vf=0.1// in V
+T=300//in kelvin
+Be=30 //A/K2/cm2
+A=0.01 //cm2
+//part(a)
+phi_B=phi_m-X
+disp(phi_B,"Theoretical barrier height in eV")
+//part(b)
+phi_B=0.5 //in eV
+Io=A*Be*T^2*exp(-phi_B/kT)
+disp(Io*10^6,"Saturation current in micro amperes is")
+//let/E=e*Vf //in eV
+E=0.1 //in eV
+If=Io*(exp((E/kT))-1)
+disp(If*10^3,"Forward current in milli amperes is")
diff --git a/3492/CH5/EX5.2/Ex5_2.sce b/3492/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..39b28be48 --- /dev/null +++ b/3492/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,10 @@ +clc
+//Chapter5
+//Ex_2
+//Given
+T=300//in kelvin
+k=1.38*10^-23 // in m2 kg s-2 K-1
+me=9.1*10^-31 // in Kg
+m=0.26*me
+Ve=sqrt(3*k*T/m)
+disp(Ve,"Mean speed of electrons in conduction band in m/s is")
diff --git a/3492/CH5/EX5.3/Ex5_3.sce b/3492/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..129a3a47c --- /dev/null +++ b/3492/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,21 @@ +clc
+//Chapter5
+//Ex_3
+//Given
+e=1.6*10^-19 // in coulombs
+ue=1350//in cm2/V/s
+uh=450//in cm2/V/s
+ni=1.45*10^10 //in cm^-3
+L=1 //in cm
+A=1 //in cm2
+N_Si=5*10^22 //in cm^-3
+sigma=e*ni*(ue+uh)
+R=L/(sigma*A)
+disp(R,"Resistance of a pure Silicon crystal in ohms is")
+Nd=N_Si/10^9
+n=Nd //at room temperature
+p=ni^2/Nd
+sigma=e*n*ue
+R=L/(sigma*A)
+disp(R,"Resistance in ohms of Silicon crystal when dopped with Arsenic with 1 in 10^9 is")
+
diff --git a/3492/CH5/EX5.4/Ex5_4.sce b/3492/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..db0a62857 --- /dev/null +++ b/3492/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,10 @@ +clc
+//Chapter5
+//Ex_4
+//Given
+Na=10^17 //acceptor atoms /cm3
+Nd=10^16 //donor atoms /cm3
+p=Na-Nd // in cm^-3
+ni=1.45*10^10 //in cm^-3
+n=ni^2/p
+disp(n,"Electron concentration in cm^-3")
diff --git a/3492/CH5/EX5.5/Ex5_5.sce b/3492/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..323882548 --- /dev/null +++ b/3492/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,24 @@ +clc
+//Chapter5
+//Ex_5
+//Given
+Na=2*10^17 //acceptor atoms /cm3
+Nd=10^16 //acceptor atoms /cm3
+ni=1.45*10^10 //in cm^-3
+K=0.0259 // in eV
+//since Nd>>ni
+n=Nd
+//let EFn-EFi=E
+E=K*log(Nd/ni)
+disp(E,"Position of the fermi energy w.r.t fermi energy in intrinsic Si in eV is")
+//for intrinsic Si
+//ni=Nc*exp(-(Ec-E_Fi)/(k*T))
+//for doped Si
+//Nd=Nc*exp(-(Ec-E_Fn)/(k*T))
+//let x=Nd/ni
+//let K=k*T
+p=Na-Nd
+//let E=EFp-EFi
+//let n=p/ni
+E=-K*log(p/ni)
+disp(E,"Position of the fermi energy w.r.t fermi energy in n-type case in eV is")
diff --git a/3492/CH5/EX5.7/Ex5_7.sce b/3492/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..549cdc666 --- /dev/null +++ b/3492/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,19 @@ +clc
+//Chapter5
+//Ex_7
+//Given
+Nd=10^15 //in cm^-3
+Nc=2.8*10^19 //in cm^-3
+Ti=556 // in Kelvin
+k=8.62*10^-5 //in eV/K
+delta_E=0.045 //in eV
+T=300 //in kelvin
+//part(a)
+disp("From fig 5.16 the estimated temperature above which the si sample behaves as if intrinsic is 556 Kelvin")
+//part(b)
+Ts=delta_E/(k*log(Nc/(2*Nd)))
+Nc_Ts=Nc*(Ts/T)^(3/2)
+disp(Ts,"Lowest temperature in kelvin is")
+//the improved temperature
+Ts=delta_E/(k*log(Nc_Ts/(2*Nd)))
+printf("Extrinsic range of Si is %f K to 556 K",Ts)
diff --git a/3492/CH5/EX5.9/Ex5_9.sce b/3492/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..952fd7528 --- /dev/null +++ b/3492/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,19 @@ +clc
+//Chapter5
+//Ex_9
+//Given
+e=1.6*10^-19 // in coulombs
+Nd=10^17 //in cm^-3
+Na=9*10^16 //in cm^-3
+//part(a)
+ue1=800 // at 300 kelvin ue in cm2/V/s
+sigma1=e*Nd*ue1
+ue2=420 // at 400 kelvin ue in cm2/V/s
+sigma2=e*Nd*ue2
+disp(sigma2,sigma1,"when Si sample is doped with 10^17 arsenic atoms/cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is")
+//part(b)
+ue1=600 // at 300 kelvin ue in cm2/V/s
+sigma1=e*(Nd-Na)*ue1
+ue2=400 // at 400 kelvin ue in cm2/V/s
+sigma2=e*(Nd-Na)*ue2
+disp(sigma2,sigma1,"when n-type Si is further doped with 9*10^16 boron atoms /cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is")
|