diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3492/CH1 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3492/CH1')
-rw-r--r-- | 3492/CH1/EX1.1/Ex1_1.sce | 13 | ||||
-rw-r--r-- | 3492/CH1/EX1.10/Ex1_10.sce | 20 | ||||
-rw-r--r-- | 3492/CH1/EX1.11/Ex1_11.sce | 35 | ||||
-rw-r--r-- | 3492/CH1/EX1.2/Ex1_2.sce | 13 | ||||
-rw-r--r-- | 3492/CH1/EX1.3/Ex1_3.sce | 9 | ||||
-rw-r--r-- | 3492/CH1/EX1.4/Ex1_4.sce | 13 | ||||
-rw-r--r-- | 3492/CH1/EX1.5/Ex1_5.sce | 17 | ||||
-rw-r--r-- | 3492/CH1/EX1.7/Ex1_7.sce | 25 | ||||
-rw-r--r-- | 3492/CH1/EX1.8/Ex1_8.sce | 14 | ||||
-rw-r--r-- | 3492/CH1/EX1.9/Ex1_9.sce | 18 |
10 files changed, 177 insertions, 0 deletions
diff --git a/3492/CH1/EX1.1/Ex1_1.sce b/3492/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..d1b7ef6e7 --- /dev/null +++ b/3492/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,13 @@ +clc
+//Chapter1
+//Ex_1.1
+//Given
+A=8*10^-77 // in J m^6
+B=1.12*10^-133 // in J m^12
+//lennard-Jones 6-12 potential Energy (PE)curve is E(r)=-A*r^-6+B*r^-12
+//For bonding to occur PE should be minimum, hence differentiating the PE equation and setting it to Zero at r=ro we get
+ro=(2*B/A)^(1/6)
+disp(ro,"Bond length in meters is")
+E_bond= -A*ro^-6+(B*ro^-12)//in J
+E_bond=abs(E_bond/(1.6*10^-19))
+disp(E_bond,"Bond Energy for solid argon in ev is")
diff --git a/3492/CH1/EX1.10/Ex1_10.sce b/3492/CH1/EX1.10/Ex1_10.sce new file mode 100644 index 000000000..55b46cae6 --- /dev/null +++ b/3492/CH1/EX1.10/Ex1_10.sce @@ -0,0 +1,20 @@ +clc
+//Chapter1
+//Ex_1.10
+//Given
+NA=6.023*10^23 //mol^-1
+d=2.33 //density of Si in g/cm3
+Mat=28.09//g/mol
+Ev=2.4 //ev/atom
+Ev=2.4*1.6*10^-19 //J/atom
+k=1.38*10^-23 //J/K
+T=300 //kelvin
+T1=1000//degree celcius
+T1=T1+273 //in kelvin
+N= (NA*d)/Mat
+//at room temperature
+nv=N*exp(-(Ev/(k*T)))
+disp(nv,"concentration of vacancies in a Si crystal at room temperature in cm^-3 is")
+//at 1000 degree celcius
+nv=N*exp(-(Ev/(k*T1)))
+disp(nv,"concentration of vacancies in a Si crystal at 1000 degree celcius in cm^-3 is")
diff --git a/3492/CH1/EX1.11/Ex1_11.sce b/3492/CH1/EX1.11/Ex1_11.sce new file mode 100644 index 000000000..78d049453 --- /dev/null +++ b/3492/CH1/EX1.11/Ex1_11.sce @@ -0,0 +1,35 @@ +clc
+//Chapter1
+//Ex_1.11
+//Given
+//from fig 7.1
+//at 210 degree celcius
+disp("At 210 degree celcius")
+C_L=50 //CL=50% Sn
+C_alpha=18 //C_alpha=18% Sn
+Co=40 // solidification of alloy
+//lever rule
+W_alpha=(C_L-Co)/(C_L-C_alpha)
+disp(W_alpha*100,"weight fraction of alpha in the alloy is")
+W_L=1-W_alpha
+disp(W_L*100,"weight fraction of liquid phase in the alloy is")
+//at 183.5 degree celcius
+disp("At 183.5 degree celcius")
+C_L=61.9 //CL=50% Sn
+C_alpha=19.2 //C_alpha=18% Sn
+Co=40 // solidification of alloy
+//lever rule
+W_alpha=(C_L-Co)/(C_L-C_alpha)
+disp(W_alpha*100,"weight fraction of alpha in the alloy is")
+W_L=1-W_alpha
+disp(W_L*100,"weight fraction of liquid phase in the alloy is")
+//at 182.5 degree celcius
+disp("At 182.5 degree celcius")
+C_beta=97.5 //CL=50% Sn
+C_alpha=19.2 //C_alpha=18% Sn
+Co=40 // solidification of alloy
+//lever rule
+W_alpha=(C_beta-Co)/(C_beta-C_alpha)
+disp(W_alpha*100,"weight fraction of alpha in the alloy is")
+W_beta=1-W_alpha
+disp(W_beta*100,"weight fraction of beta phase in the alloy is")
diff --git a/3492/CH1/EX1.2/Ex1_2.sce b/3492/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..ebf88c0b3 --- /dev/null +++ b/3492/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,13 @@ +clc
+//Chapter1
+//Ex_1.2
+//Given
+R=8.314 // in J/mol/K
+T=27 //in degree celcius
+T=T+273 //in Kelvin
+M_at=14 //in g/mol
+//From Kinetic Theory
+V_rms=sqrt((3*R*T)/(2*M_at*10^-3))
+disp(V_rms,"rms velocity of Nitrogen molecule in atmosphere at 300K in m/s is")
+V_rmsx=V_rms/sqrt(3)
+disp(V_rmsx,"rms velocity in one direction in m/s is")
diff --git a/3492/CH1/EX1.3/Ex1_3.sce b/3492/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..17ebc640d --- /dev/null +++ b/3492/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,9 @@ +clc
+//Chapter1
+//Ex_1.3
+//Given
+R=8.314 // in J/mol/K
+M_at=63.6 //in g/mol
+//Acc. to Dulong -Petit rule Cm=3R for NA atoms
+C_gram=3*R/M_at
+disp(C_gram,"Heat Capacity of copper per unit gram in J/g/K is")
diff --git a/3492/CH1/EX1.4/Ex1_4.sce b/3492/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..41c14c2a6 --- /dev/null +++ b/3492/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,13 @@ +clc
+//Chapter1
+//Ex_1.4
+//Given
+k=1.38*10^-23 //in J/K
+m=9.1*10^-31 // in Kg
+T=300 // in Kelvin
+v_av=sqrt(8*k*T/(%pi*m))
+disp(v_av*10^-3,"Mean speed for a gas of non interacting electrons in Km is ")
+v=sqrt(2*k*T/(m))
+disp(v*10^-3,"Most probable speed for a gas of non interacting electrons in Km is")
+v_rms=sqrt(3*k*T/(m))
+disp(v_rms*10^-3,"rms velocity for a gas of non interacting electrons in Km is")
diff --git a/3492/CH1/EX1.5/Ex1_5.sce b/3492/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..f9dcef837 --- /dev/null +++ b/3492/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,17 @@ +clc
+//Chapter1
+//Ex_1.5
+//Given
+L=100*10^-6//in Henry
+C=100 *10^-12 //in Farad
+T=300 // in Kelvin
+R=200*10^3 //in ohms
+k=1.38*10^-23 //in J/K
+fo=1/(2*%pi*sqrt(L*C))//resonant frequency
+Q=2*%pi*fo*C*R//quality factor
+B=fo/Q //Bandwidth of tuned RLC
+//Acc. to Johnson resistor noise equation
+Vrms=sqrt(4*k*T*R*B) //in volts
+Vrms=Vrms/10^-6 //in micro volts
+disp(Vrms," Minimum rms radio signal that can be detected in micro volts is")
+
diff --git a/3492/CH1/EX1.7/Ex1_7.sce b/3492/CH1/EX1.7/Ex1_7.sce new file mode 100644 index 000000000..4aedd9331 --- /dev/null +++ b/3492/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,25 @@ +clc
+//Chapter1
+//Ex_1.7
+//Given
+n=4
+M_at=63.55*10^-3//Kg/mol
+NA=6.022*10^23 //mol^-1
+R=0.128// in nm
+c=8 //no.of cornersof unit cells
+f=6 //no.of faces of unit cells
+//a
+N=c*(1/8)+f*(1/2)
+disp(N,"No. of atoms per unit cells is")
+//b
+//Lattice parameter
+a=R*2*2^(1/2)
+disp(a,"Lattice Parameter in nm is")
+a=a*10^-9 //in m
+//c
+//APF=(No.of atoms in unit cell)*(Vol. of atom)/(Vol. of unit cell)
+APF=4^2*%pi/(3*(2*sqrt(2))^3)
+disp(APF,"Atomic Packing Factor is")
+//d
+p=n*M_at/(a^3*NA) //density
+disp(p,"density of Copper in Kg/m3 is")
diff --git a/3492/CH1/EX1.8/Ex1_8.sce b/3492/CH1/EX1.8/Ex1_8.sce new file mode 100644 index 000000000..5fb793144 --- /dev/null +++ b/3492/CH1/EX1.8/Ex1_8.sce @@ -0,0 +1,14 @@ +clc
+//Chapter1
+//Ex_1.8
+//Given
+a=1/%inf
+b=-1/1
+c=2/1
+p = int32([1,1,1])
+// 1/%inf = 0 ; (0/1 -1/1 2/1) hence lcm is taken for [1 1 1]
+LCM = lcm(p)
+h=a*double(LCM)
+k=b*double(LCM)
+l=c*double(LCM)
+ mprintf('miller indices = %d %d %d',h,k,l)
diff --git a/3492/CH1/EX1.9/Ex1_9.sce b/3492/CH1/EX1.9/Ex1_9.sce new file mode 100644 index 000000000..a751d7034 --- /dev/null +++ b/3492/CH1/EX1.9/Ex1_9.sce @@ -0,0 +1,18 @@ +clc
+//Chapter1
+//Ex_1.9
+//Given
+k=1.38*10^-23 //J/K
+T=300 //kelvin
+Ev=0.75 //eV/atom
+Ev=Ev*1.6*10^-19 //in J
+T1=660//degree celcius
+T1=T1+273 //in kelvin
+//at room temperature
+//let nv/N=nv_N for convenience
+nv_N=exp(-Ev/(k*T))
+disp(nv_N,"Fractional concentration of vacancies in the aluminium crystal at room temperature is")
+//at melting temperature
+//let nv/N=nv_N for convenience
+nv_N=exp(-Ev/(k*T1))
+disp(nv_N,"Fractional concentration of vacancies in the aluminium crystal at melting temperature is")
|