diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH7/EX7.26 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3472/CH7/EX7.26')
-rw-r--r-- | 3472/CH7/EX7.26/Ex7_26.png | bin | 0 -> 11504 bytes | |||
-rw-r--r-- | 3472/CH7/EX7.26/Example7_26.sce | 78 |
2 files changed, 78 insertions, 0 deletions
diff --git a/3472/CH7/EX7.26/Ex7_26.png b/3472/CH7/EX7.26/Ex7_26.png Binary files differnew file mode 100644 index 000000000..d02304619 --- /dev/null +++ b/3472/CH7/EX7.26/Ex7_26.png diff --git a/3472/CH7/EX7.26/Example7_26.sce b/3472/CH7/EX7.26/Example7_26.sce new file mode 100644 index 000000000..70cfd3823 --- /dev/null +++ b/3472/CH7/EX7.26/Example7_26.sce @@ -0,0 +1,78 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART I : GENERATION
+// CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
+
+// EXAMPLE : 7.26 :
+// Page number 85-86
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+Q1 = 1100.0 // Discharge in descending order(m^3/sec)
+Q2 = 1000.0 // Discharge(m^3/sec)
+Q3 = 900.0 // Discharge(m^3/sec)
+Q4 = 800.0 // Discharge(m^3/sec)
+Q5 = 700.0 // Discharge(m^3/sec)
+Q6 = 600.0 // Discharge(m^3/sec)
+Q7 = 500.0 // Discharge(m^3/sec)
+Q8 = 400.0 // Discharge(m^3/sec)
+Q9 = 300.0 // Discharge(m^3/sec)
+Q10 = 200.0 // Discharge(m^3/sec)
+Q11 = 100.0 // Discharge(m^3/sec)
+no_week = 13.0 // Total weeks of discharge
+h = 200.0 // Head of installation(m)
+n_overall = 0.88 // Overall efficiency of turbine and generator
+w = 1000.0 // Density of water(kg/m^3)
+
+// Calculations
+n1 = 1.0 // Number of weeks for 1100 discharge(m^3/sec)
+n2 = 2.0 // Number of weeks for 1000 and above discharge(m^3/sec)
+n3 = 3.0 // Number of weeks for 900 and above discharge(m^3/sec)
+n4 = 4.0 // Number of weeks for 800 and above discharge(m^3/sec)
+n5 = 6.0 // Number of weeks for 700 and above discharge(m^3/sec)
+n6 = 7.0 // Number of weeks for 600 and above discharge(m^3/sec)
+n7 = 9.0 // Number of weeks for 500 and above discharge(m^3/sec)
+n8 = 10.0 // Number of weeks for 400 and above discharge(m^3/sec)
+n9 = 11.0 // Number of weeks for 300 and above discharge(m^3/sec)
+n10 = 12.0 // Number of weeks for 200 and above discharge(m^3/sec)
+n11 = 13.0 // Number of weeks for 100 and above discharge(m^3/sec)
+P1 = n1/no_week*100 // Percentage of total period for n1
+P2 = n2/no_week*100 // Percentage of total period for n2
+P3 = n3/no_week*100 // Percentage of total period for n3
+P4 = n4/no_week*100 // Percentage of total period for n4
+P5 = n5/no_week*100 // Percentage of total period for n5
+P6 = n6/no_week*100 // Percentage of total period for n6
+P7 = n7/no_week*100 // Percentage of total period for n7
+P8 = n8/no_week*100 // Percentage of total period for n8
+P9 = n9/no_week*100 // Percentage of total period for n9
+P10 = n10/no_week*100 // Percentage of total period for n10
+P11 = n11/no_week*100 // Percentage of total period for n11
+P = [0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11]
+Q = [Q1,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11] // Plotting flow duration curve
+a = gca() ;
+a.thickness = 2 // sets thickness of plot
+plot(P,Q,'ro-')
+a.x_label.text = 'Percentage of time' // labels x-axis
+a.y_label.text = 'Q(m^3/sec)' // labels y-axis
+xtitle("Fig E7.5 . Plot of Flow-duration curve")
+xset('thickness',2) // sets thickness of axes
+xgrid(4)
+Q_1 = 1.0 // Discharge(m^3/sec)
+P_1 = 0.736/75*w*Q_1*h*n_overall // Power developed for Q_1(kW)
+Q_av = 600.0 // Average discharge(m^3/sec). Obtained from Example 1.7.25
+P_av = P_1*Q_av/1000.0 // Average power developed(MW)
+Q_max = Q1 // Maximum discharge(m^3/sec)
+P_max = P_1*Q_max/1000.0 // Maximum power developed(MW)
+Q_10 = 1070.0 // Discharge for 10% of time(m^3/sec). Value is obtained from graph
+P_10 = P_1*Q_10/1000.0 // Installed capacity(MW)
+
+// Results
+disp("PART I - EXAMPLE : 7.26 : SOLUTION :-")
+printf("\nFlow-duration curve is shown in the Figure E7.5")
+printf("\nMaximum power developed = %.f MW", P_max)
+printf("\nAverage power developed = %.f MW", P_av)
+printf("\nCapacity of proposed station = %.f MW \n", P_10)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook solution")
|