diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH30/EX30.4/Example30_4.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3472/CH30/EX30.4/Example30_4.sce')
-rw-r--r-- | 3472/CH30/EX30.4/Example30_4.sce | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/3472/CH30/EX30.4/Example30_4.sce b/3472/CH30/EX30.4/Example30_4.sce new file mode 100644 index 000000000..5d21f554a --- /dev/null +++ b/3472/CH30/EX30.4/Example30_4.sce @@ -0,0 +1,55 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
+
+// EXAMPLE : 4.4 :
+// Page number 513-514
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V = 11000.0 // Alternator voltage(V)
+kVA = 50000.0 // Alternator rating(kVA)
+Z_l1 = complex(0.4,0.7) // Positive sequence impedance of feeder(ohm)
+Z_l2 = complex(0.4,0.7) // Negative sequence impedance of feeder(ohm)
+Z_l0 = complex(0.7,3.0) // Zero sequence impedance of feeder(ohm)
+Z_g1_A = complex(0,0.6) // Positive sequence reactance(ohm)
+Z_g1_B = complex(0,0.6) // Positive sequence reactance(ohm)
+Z_g2_A = complex(0,0.4) // Negative sequence reactance(ohm)
+Z_g2_B = complex(0,0.4) // Negative sequence reactance(ohm)
+Z_g0_A = complex(0,0.2) // Zero sequence reactance(ohm)
+Z_g0_B = complex(0,0.2) // Zero sequence reactance(ohm)
+Z_n_A = complex(0,0.2) // Neutral reactance(ohm)
+Z_n_B = complex(0,0.2) // Neutra reactance(ohm)
+
+// Calculations
+a = exp(%i*120.0*%pi/180) // Operator
+Z_g1 = 1.0/((1/Z_g1_A)+(1/Z_g1_B)) // Equivalent positive sequence impedance(ohm)
+Z_g2 = 1.0/((1/Z_g2_A)+(1/Z_g2_B)) // Equivalent negative sequence impedance(ohm)
+Z_g0 = 1.0/((1/Z_g0_A)+(1/Z_g0_B)) // Equivalent zero sequence impedance(ohm)
+Z_n = 1.0/((1/Z_n_A)+(1/Z_n_B)) // Equivalent neutral impedance(ohm)
+Z_1 = Z_l1+Z_g1 // Positive sequence impedance(ohm)
+Z_2 = Z_l2+Z_g2 // Negative sequence impedance(ohm)
+Z_0 = Z_l0+Z_g0+3*Z_n // Zero sequence impedance(ohm)
+Z = Z_0*Z_2/(Z_0+Z_2) // Impedance(ohm)
+E_R = V/3**0.5 // Phase voltage(V)
+I_R1 = E_R/(Z_1+Z) // Postive sequence current(A)
+I_R2 = -Z*I_R1/Z_2 // Negative sequence current(A)
+I_R0 = -Z*I_R1/Z_0 // Zero sequence current(A)
+I_R = I_R0+I_R1+I_R2 // Fault current in line(A)
+I_Y = I_R0+a**2*I_R1+a*I_R2 // Fault current in line(A)
+I_B = I_R0+a*I_R1+a**2*I_R2 // Fault current in line(A)
+I_earth = 3.0*I_R0 // Current through earth reactance(A)
+V_neutral = abs(I_earth*Z_n) // Magnitude of potential above earth attained by generator neutral(V)
+
+// Results
+disp("PART III - EXAMPLE : 4.4 : SOLUTION :-")
+printf("\nFault current in the line R, I_R = %.f A", abs(I_R))
+printf("\nFault current in the line Y, I_Y = (%.f%.fj) A", real(I_Y),imag(I_Y))
+printf("\nFault current in the line B, I_B = (%.f+%.fj) A", real(I_B),imag(I_B))
+printf("\nPotential above earth attained by the alternator neutrals = %.f V\n", V_neutral)
+printf("\nNOTE: ERROR: Voltage is 11000 not 11000 kV as given in textbook statement")
+printf("\n Changes in the obtained answer from that of textbook is due to more precision here")
|