summaryrefslogtreecommitdiff
path: root/3472/CH29/EX29.5/Example29_5.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH29/EX29.5/Example29_5.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3472/CH29/EX29.5/Example29_5.sce')
-rw-r--r--3472/CH29/EX29.5/Example29_5.sce45
1 files changed, 45 insertions, 0 deletions
diff --git a/3472/CH29/EX29.5/Example29_5.sce b/3472/CH29/EX29.5/Example29_5.sce
new file mode 100644
index 000000000..bcd081621
--- /dev/null
+++ b/3472/CH29/EX29.5/Example29_5.sce
@@ -0,0 +1,45 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART III : SWITCHGEAR AND PROTECTION
+// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
+
+// EXAMPLE : 3.5 :
+// Page number 490-491
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+E_a = 100.0 // Line to line voltage(V)
+E_b = 150.0 // Line to line voltage(V)
+E_c = 200.0 // Line to line voltage(V)
+
+// Calculations
+e_A = 1.0 // 100 V = 1 unit
+e_B = 1.5 // 150 V = 1 unit
+e_C = 2.0 // 200 V = 1 unit
+cos_alpha = (e_C**2-e_A-e_B**2)/(2*e_B)
+alpha = acosd(cos_alpha) // angle(°)
+cos_beta = (e_A+e_B*cos_alpha)/e_C
+beta = acosd(cos_beta) // angle(°)
+E_A = E_a*exp(%i*180.0*%pi/180) // Voltage(V)
+E_B = E_b*exp(%i*(180.0-alpha)*%pi/180) // Voltage(V)
+E_C = E_c*exp(%i*-beta*%pi/180) // Voltage(V)
+a = exp(%i*120.0*%pi/180) // Operator
+E_A0 = 1.0/3*(E_A+E_B+E_C) // Zero sequence voltage(V)
+E_A1 = 1.0/3*(E_A+a*E_B+a**2*E_C) // Positive sequence delta voltage(V)
+E_A1_mag = abs(E_A1) // Magnitude of positive sequence delta voltage(V)
+E_a1 = -%i/3**0.5*E_A1 // Positive sequence star voltage(V)
+E_a1_mag = abs(E_a1) // Magnitude of positive sequence star voltage(V)
+E_A2 = 1.0/3*(E_A+a**2*E_B+a*E_C) // Negative sequence delta voltage(V)
+E_A2_mag = abs(E_A2) // Magnitude of negative sequence delta voltage(V)
+E_a2 = %i/3**0.5*E_A2 // Negative sequence star voltage(V)
+E_a2_mag = abs(E_a2) // Magnitude of negative sequence star voltage(V)
+
+// Results
+disp("PART III - EXAMPLE : 3.5 : SOLUTION :-")
+printf("\nMagnitude of positive sequence delta voltage, |E_A1| = %.f V", E_A1_mag)
+printf("\nMagnitude of positive sequence star voltage, |E_a1| = %.1f V", E_a1_mag)
+printf("\nMagnitude of negative sequence delta voltage, |E_A2| = %.f V", E_A2_mag)
+printf("\nMagnitude of negative sequence star voltage, |E_a2| = %.f V", E_a2_mag)