diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH12/EX12.11/Example12_11.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3472/CH12/EX12.11/Example12_11.sce')
-rw-r--r-- | 3472/CH12/EX12.11/Example12_11.sce | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/3472/CH12/EX12.11/Example12_11.sce b/3472/CH12/EX12.11/Example12_11.sce new file mode 100644 index 000000000..cbb405ed7 --- /dev/null +++ b/3472/CH12/EX12.11/Example12_11.sce @@ -0,0 +1,47 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
+
+// EXAMPLE : 5.11 :
+// Page number 202-203
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+a = 120.0 // Area(mm^2)
+ds = 2.11 // Diameter of each strand(mm)
+W = 1118.0/1000 // Weight of conductor(kg/m)
+L = 200.0 // Span(m)
+stress = 42.2 // Ultimate tensile stress(kg/mm^2)
+wind = 60.0 // Wind pressure(kg/m^2)
+t = 10.0 // Ice thickness(mm)
+
+// Calculations
+n = 3.0 // Number of layers
+d = (2*n+1)*ds // Overall diameter of conductor(mm)
+u = stress*a // Ultimate strength(kg)
+T = u/4.0 // Working stregth(kg)
+// Case(a)
+S_a = W*L**2/(8*T) // Sag in still air(m)
+// Case(b)
+area = d*100*10.0*10**-6 // Projected area to wind pressure(m^2)
+w_w = wind*area // Wind load/m(kg)
+w_r = (W**2+w_w**2)**0.5 // Resultant weight/m(kg)
+S_b = w_r*L**2/(8*T) // Total sag with wind pressure(m)
+w_i = 0.915*%pi/4*((d+2*t)**2-(d**2))/1000.0 // Weight of ice on conductor(kg/m)
+area_i = (d+2*t)*1000.0*10**-6 // Projected area to wind pressure(m^2)
+w_n = wind*area_i // Wind load/m(kg)
+w_r_c = ((W+w_i)**2+w_n**2)**0.5 // Resultant weight/m(kg)
+S_c = w_r_c*L**2/(8*T) // Total sag with wind pressure and ice coating(m)
+S_v = S_c*(W+w_i)/w_r_c // Vertical component of sag(m)
+
+// Results
+disp("PART II - EXAMPLE : 5.11 : SOLUTION :-")
+printf("\nCase(a) : Sag in still air, S = %.2f m", S_a)
+printf("\nCase(b) : Sag with wind pressure, S = %.2f m", S_b)
+printf("\n Sag with wind pressure and ice coating, S = %.2f m", S_c)
+printf("\n Vertical sag, S_v = %.2f m \n", S_v)
+printf("\nNOTE: ERROR: calculation mistake in the textbook")
|