summaryrefslogtreecommitdiff
path: root/3433/CH6
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /3433/CH6
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '3433/CH6')
-rw-r--r--3433/CH6/EX6.1/Ex6_1.sce42
-rw-r--r--3433/CH6/EX6.2/Ex6_2.sce46
2 files changed, 88 insertions, 0 deletions
diff --git a/3433/CH6/EX6.1/Ex6_1.sce b/3433/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..dd23b1d81
--- /dev/null
+++ b/3433/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,42 @@
+clear;
+clc;
+funcprot(0);
+
+//given data
+dt = 1.0;//tip diameter in m
+dh = 0.9;//hub diameter in m
+alpha1 = 30;//in deg
+beta1 = 60;//in deg
+alpha2 = 60;//in deg
+beta2 = 30;//in deg
+N = 6000;//rotational speed in rev/min
+rhog = 1.5;//gas density in kg/m^3
+Rt = 0.5;//degree of reaction at the tip
+
+//Calculations
+omega = 2*%pi*N/60;
+Ut = omega*0.5*dt;
+Uh = omega*0.5*dh;
+cx = Ut/(tan(alpha1*%pi/180) + tan(beta1*%pi/180));
+mdot = %pi*((0.5*dt)^2 - (0.5*dh)^2)*rhog*cx;
+Wcdot = mdot*Ut*cx*(tan(alpha2*%pi/180)- tan(alpha1*%pi/180));
+ctheta1t = cx*tan(alpha1*%pi/180);
+ctheta1h = ctheta1t*(dt/dh);
+ctheta2t = cx*tan(alpha2*%pi/180);
+ctheta2h = ctheta2t*(dt/dh);
+alpha1_ = (180/%pi)*atan(ctheta1h/cx);
+beta1_ = (180/%pi)*atan((Uh/cx) - tan(alpha1_*%pi/180));
+alpha2_ = (180/%pi)*atan(ctheta2h/cx);
+beta2_ = (180/%pi)*atan((Uh/cx) - tan(alpha2_*%pi/180));
+k = Rt*(0.5*dt)^2;
+Rh = 1 - (k/(0.5*dh)^2);
+
+//Results
+printf('(i)The axial velocity, cx = %d m/s',cx);
+printf('\n (ii)The mass flow rate = %.1f kg/s',mdot);
+printf('\n (iii)The power absorbed by the stage = %.1f MW',Wcdot/(10^6));
+printf('\n (iv)The flow angles at the hub are:\n alpha1 = %.2f deg,\n beta1 = %.2f deg,\n alpha2 = %.1f deg, and\n beta2 = %.2f deg.',alpha1_,beta1_,alpha2_,beta2_);
+printf('\n (v)The reaction ratio of the stage at the hub, R = %.3f.',Rh);
+
+
+//there are small errors in the answers given in textbook
diff --git a/3433/CH6/EX6.2/Ex6_2.sce b/3433/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..f0bd6a249
--- /dev/null
+++ b/3433/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,46 @@
+clear;
+clc;
+funcprot(0);
+
+//given data
+
+R = 0.5;//degree of reaction
+Cp = 1005;//kJ/(kgC)
+cx1_Ut_rt = 0.4;
+delT0 = 16.1;//temperature rise
+Ut = 300;//in m/s
+
+//calculations
+A1 = cx1_Ut_rt^2 +(0.5-0.18*log(1));
+c1 = 2*(1-R);
+c2 = Cp*delT0/(2*Ut^2 *(1-R));
+A2 = 0.56;
+k = 0.4:0.01:1.0;
+n = (1.0-0.4)/0.01 + 1;
+i = 1;
+for i = 1:n
+ cx1_Ut(i) = sqrt(A1 - (c1^2)*(0.5*k(i)^2 - c2*log(k(i))));
+ cx2_Ut(i) = sqrt(A2 - (c1^2)*(0.5*k(i)^2 + c2*log(k(i))));
+ R_(i) = 0.778+log(k(i));
+ Rn(i) = 0.5;
+end
+
+//Results
+plot(k,cx1_Ut,'bo-');
+plot(k,cx2_Ut,'<>r-');
+title("Solution of exit axial-velocity profile for a first power stage","fontsize",3) ;//title of the plot
+xlabel("Radius ratio, r/rt","fontsize",3) ;//x label
+ylabel("cx/Ut","fontsize",3) ;//y label
+legend(["(cx2/Ut)";"(cx1/Ut)"] , opt=2); //legend box
+a=gca();
+b = newaxes();
+b.y_location = "right";
+b.filled = "off";
+b.axes_visible = ["off","on","on"];
+b.axes_bounds = a.axes_bounds;
+b.font_size = a.font_size;
+plot(k,R_,"g");
+plot(k,Rn,);
+ylabel("Reaction","fontsize",3) ;//y label
+legend(["True Reaction";"Nominal Reaction"] , opt=1); //legend box
+