summaryrefslogtreecommitdiff
path: root/3428/CH23
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:38:01 +0530
committerprashantsinalkar2017-10-10 12:38:01 +0530
commitf35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch)
treeeb72842d800ac1233e9d890e020eac5fd41b0b1b /3428/CH23
parent7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff)
downloadScilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip
updated the code
Diffstat (limited to '3428/CH23')
-rw-r--r--3428/CH23/EX14.23.1/Ex14_23_1.sce6
-rw-r--r--3428/CH23/EX14.23.11/Ex14_23_11.sce13
-rw-r--r--3428/CH23/EX14.23.12/Ex14_23_12.sce8
-rw-r--r--3428/CH23/EX14.23.13/Ex14_23_13.sce15
-rw-r--r--3428/CH23/EX14.23.15/Ex14_23_15.sce2
-rw-r--r--3428/CH23/EX14.23.16/Ex14_23_16.sce5
-rw-r--r--3428/CH23/EX14.23.17/Ex14_23_17.sce20
-rw-r--r--3428/CH23/EX14.23.18/Ex14_23_18.sce22
-rw-r--r--3428/CH23/EX14.23.2/Ex14_23_2.sce6
-rw-r--r--3428/CH23/EX14.23.20/Ex14_23_20.sce8
-rw-r--r--3428/CH23/EX14.23.21/Ex14_23_21.sce13
-rw-r--r--3428/CH23/EX14.23.22/Ex14_23_22.sce7
-rw-r--r--3428/CH23/EX14.23.23/Ex14_23_23.sce2
-rw-r--r--3428/CH23/EX14.23.25/Ex14_23_25.sce2
-rw-r--r--3428/CH23/EX14.23.26/Ex14_23_26.sce4
-rw-r--r--3428/CH23/EX14.23.27/Ex14_23_27.sce16
-rw-r--r--3428/CH23/EX14.23.30/Ex14_23_30.sce10
-rw-r--r--3428/CH23/EX14.23.4/Ex14_23_4.sce19
-rw-r--r--3428/CH23/EX14.23.7/Ex14_23_7.sce10
-rw-r--r--3428/CH23/EX14.23.9/Ex14_23_9.sce4
20 files changed, 100 insertions, 92 deletions
diff --git a/3428/CH23/EX14.23.1/Ex14_23_1.sce b/3428/CH23/EX14.23.1/Ex14_23_1.sce
index 19dfb324d..b1310dd1d 100644
--- a/3428/CH23/EX14.23.1/Ex14_23_1.sce
+++ b/3428/CH23/EX14.23.1/Ex14_23_1.sce
@@ -3,10 +3,10 @@
clc;
//K_p=K_c*((R*T)^dl_n)
dl_n=2-(1+3)
-T=673
-R=0.0821
+T=673 //Kelvin
+R=0.0821 // (dm^3K^-1mol^-1)
K_c=0.495
-P=2
+P=2 //atm
K_p=K_c*((R*T)^dl_n)
disp(K_p)
//K_p=K_x*((P)^dl_n)
diff --git a/3428/CH23/EX14.23.11/Ex14_23_11.sce b/3428/CH23/EX14.23.11/Ex14_23_11.sce
index 8d68f0791..a6f0210aa 100644
--- a/3428/CH23/EX14.23.11/Ex14_23_11.sce
+++ b/3428/CH23/EX14.23.11/Ex14_23_11.sce
@@ -1,7 +1,8 @@
//Section-14,Example-6,Page no.-PC.84
-//To find the concentration of Ag2+ for the given conditions.
-clc;
-K_spAgI=1.5*10^-16
-K_spAgCl=1.56*10^-10 //C=[I-]/[Cl-]
-C=(K_spAgI)/(K_spAgCl)
-disp(C,'Required concentration of AgCl')
+//To find the concentration of Ag+ ions at which I- and Cl- ions will precipitate.
+clc,
+Ksp_AgI=1.5*10^-16
+Ksp_AgCl=1.56*10^-10
+C=Ksp_AgI/Ksp_AgCl
+disp(C,'concentration of Ag+ ions at which I- and Cl- ions will precipitate')
+//Answer in the book is 9.6*10^-7 approximately equal to 0.0000010.
diff --git a/3428/CH23/EX14.23.12/Ex14_23_12.sce b/3428/CH23/EX14.23.12/Ex14_23_12.sce
deleted file mode 100644
index 2e4cf103f..000000000
--- a/3428/CH23/EX14.23.12/Ex14_23_12.sce
+++ /dev/null
@@ -1,8 +0,0 @@
-//Section-14,Example-6,Page no.-PC.84
-//To calculate the free energy change and justify the given reactions.
-clc;
-//Cu_2S + O_2 = 2Cu + SO_2
-dl_G1=88.2
-dl_G2=300.1
-dl_G=dl_G1-dl_G2
-disp(dl_G,'Free energy change(kJ)')
diff --git a/3428/CH23/EX14.23.13/Ex14_23_13.sce b/3428/CH23/EX14.23.13/Ex14_23_13.sce
index 73e257841..d35067ad8 100644
--- a/3428/CH23/EX14.23.13/Ex14_23_13.sce
+++ b/3428/CH23/EX14.23.13/Ex14_23_13.sce
@@ -1,7 +1,8 @@
-//Section-14,Example-1,Page no.-PC.90
-//To justify the given reaction
-clc,
-dl_G1=88.2
-dl_G2=-300.1
-dl_G=dl_G1+dl_G2
-disp(dl_G)
+//Section-14,Example-1,Page no.-PC.90
+//To calculate the free energy change and justify the given reactions.
+clc;
+//Cu_2S + O_2 = 2Cu + SO_2
+dl_G1=88.2 //kJ
+dl_G2=300.1 //kJ
+dl_G=dl_G1-dl_G2 //kJ
+disp(dl_G,'Free energy change(kJ)')
diff --git a/3428/CH23/EX14.23.15/Ex14_23_15.sce b/3428/CH23/EX14.23.15/Ex14_23_15.sce
index f60b85e99..222d348ae 100644
--- a/3428/CH23/EX14.23.15/Ex14_23_15.sce
+++ b/3428/CH23/EX14.23.15/Ex14_23_15.sce
@@ -2,6 +2,6 @@
//To estimate fraction of Morphine protonated.
clc;
K_b=1.6*10^-6
-B=0.010
+B=0.010 //mol/L
F_pro=sqrt(K_b/B)
disp(F_pro,'Fraction of Morphine protonated')
diff --git a/3428/CH23/EX14.23.16/Ex14_23_16.sce b/3428/CH23/EX14.23.16/Ex14_23_16.sce
index 7156a46a1..e46413cfe 100644
--- a/3428/CH23/EX14.23.16/Ex14_23_16.sce
+++ b/3428/CH23/EX14.23.16/Ex14_23_16.sce
@@ -1,8 +1,9 @@
//Section-14,Example-2,Page no.-PC.111
//To estimate the pH of 0.10 M NH_3 at 25 degree Celcius.
-clc;
+clc
+T=25 //degree Celsius
K_b=1.8*10^-5
-B=0.1
+B=0.1 //M
pK_b=-log10(K_b)
pK_w=14
F_pro=sqrt(K_b/B) //Fraction protonated
diff --git a/3428/CH23/EX14.23.17/Ex14_23_17.sce b/3428/CH23/EX14.23.17/Ex14_23_17.sce
index 97bdadbf2..9f8d59de8 100644
--- a/3428/CH23/EX14.23.17/Ex14_23_17.sce
+++ b/3428/CH23/EX14.23.17/Ex14_23_17.sce
@@ -1,22 +1,24 @@
//Section-14,Example-1,Page no.-PC.112
//To calculate the pH values of the following.
clc;
-C_HCl=0.001
-C_1=C_HCl //Since HCl is a strong acid,[H3O+]=[HCl]
+C_HCl=0.001 //(M)
+C_1=C_HCl //Since HCl is a strong acid,[H3O+]=[HCl](M)
pH_1=-log10(C_1)
disp(pH_1,'pH of 0.001 M HCl')
-C_NaOH=0.0001
-C_2=C_NaOH //Since NaOH is a strong base so [OH-]=[NaOH]
+C_NaOH=0.0001 //(M)
+C_2=C_NaOH //Since NaOH is a strong base so [OH-]=[NaOH](M)
pOH=-log10(C_2)
pH_2=14-pOH
disp(pH_2,'pH of 0.0001 M NaOH')
-C_BaOH2=0.001
-C_31=2*C_BaOH2 // [OH-]=2*[Ba(OH)2]
+C_BaOH2=0.001 //(M)
+C_31=2*C_BaOH2 // [OH-]=2*[Ba(OH)2](M)
k_w=10^-14
-C_32=k_w/(C_31)
+C_32=k_w/(C_31) //(M)
pH_3=-log10(C_32)
disp(pH_3,'pH of 0.001 M Ba(OH)2')
-M=(0.049/98)/(200/1000) //Molarity of H_2SO_4 solution
-C_4=2*M //[H_3O+]
+M_H2SO4=0.0049 //Mass of H2SO4 (gm)
+V_req=200 //Volume of solution to be prepared(ml)
+Mo=(M_H2SO4/98)/(V_req/1000) //Molarity of H_2SO_4 solution(M)
+C_4=2*Mo //[H_3O+](M)
pH_4=-log10(C_4)
disp(pH_4,'pH of the given solution')
diff --git a/3428/CH23/EX14.23.18/Ex14_23_18.sce b/3428/CH23/EX14.23.18/Ex14_23_18.sce
index a19fbf110..0fdda2abd 100644
--- a/3428/CH23/EX14.23.18/Ex14_23_18.sce
+++ b/3428/CH23/EX14.23.18/Ex14_23_18.sce
@@ -1,21 +1,21 @@
//Section-14,Example-2,Page no.-PC.112
//To calculate the pH in the following cases.
clc;
-V_1=150 //volume of 0.1 NaOH solution
-V_2=150 //volume of 0.2 HCl solution
-N_1=0.1
-N_2=0.2
-V=V_1+V_2 //Total volume of the solution
-m_eq=(V_2*N_2)-(V_1*N_1) //Total milliequivalents of excess HCl
-N=m_eq/V
-C_1=N //Since HCl is a strong acid so[HCl]=[H3O+]
+V_1=150 //volume of 0.1 NaOH solution(ml)
+V_2=150 //volume of 0.2 HCl solution(ml)
+N_1=0.1 //(N)
+N_2=0.2 //(N)
+V=V_1+V_2 //Total volume of the solution(ml)
+m_eq=(V_2*N_2)-(V_1*N_1) //Total milligram equivalents of excess HCl(gm equivalents)
+N=m_eq/V //(N)
+C_1=N //Since HCl is a strong acid so[HCl]=[H3O+] (M)
pH_1=-log10(C_1)
disp(pH_1,'pH of the required solution')
pH1=5
-C1=10^-5 //[H3O+]
+C1=10^-5 //[H3O+] (M)
pH2=3
-C2=10^-3 //[H3O+]
-C_3=(C1+C2)/2 //[H3O+]
+C2=10^-3 //[H3O+] (M)
+C_3=(C1+C2)/2 //[H3O+] (M)
pH_2=-log10(C_3)
disp(pH_2,'pH of the required solution')
diff --git a/3428/CH23/EX14.23.2/Ex14_23_2.sce b/3428/CH23/EX14.23.2/Ex14_23_2.sce
index f4f950dd0..5bd1ce993 100644
--- a/3428/CH23/EX14.23.2/Ex14_23_2.sce
+++ b/3428/CH23/EX14.23.2/Ex14_23_2.sce
@@ -1,9 +1,9 @@
//Section-14,Example-1,Page no.-PC.71
//To find Q_c and predict the direction in which the reaction would proceed.
clc;
-[N_2]=0.03
-[O_2]=0.01
-[NO]=0.04
+[N_2]=0.03 //mol
+[O_2]=0.01 //mol
+[NO]=0.04 //mol
K_c=2.2*10^3
Q_c=([N_2]*[O_2])/[NO]^2
disp(Q_c)
diff --git a/3428/CH23/EX14.23.20/Ex14_23_20.sce b/3428/CH23/EX14.23.20/Ex14_23_20.sce
index 4535b7238..bf7f8f1cd 100644
--- a/3428/CH23/EX14.23.20/Ex14_23_20.sce
+++ b/3428/CH23/EX14.23.20/Ex14_23_20.sce
@@ -2,15 +2,15 @@
//To calculate the pH in the following cases.
clc;
K_a=7.3*10^-6
-c_1=0.23
+c_1=0.23 //(M)
alpha_1=sqrt(K_a/c_1)
-C_1=c_1*alpha_1
+C_1=c_1*alpha_1 //(M)
pH_1=-log10(C_1)
disp(pH_1,'pH of the given weak acid')
-c_2=0.2
+c_2=0.2 //(M)
K_b=4.4*10^-5
alpha_2=sqrt(K_b/c_2)
-C_2=c_2*alpha_2 //[OH-]
+C_2=c_2*alpha_2 //[OH-] (M)
pOH=-log10(C_2)
pH_2=14-pOH
disp(pH_2,'pH of CH_3NH_2')
diff --git a/3428/CH23/EX14.23.21/Ex14_23_21.sce b/3428/CH23/EX14.23.21/Ex14_23_21.sce
index 19726bf37..34102a8e6 100644
--- a/3428/CH23/EX14.23.21/Ex14_23_21.sce
+++ b/3428/CH23/EX14.23.21/Ex14_23_21.sce
@@ -1,12 +1,13 @@
//Section-14,Example-5,Page no.-PC.114
//To calculate the pH of a solution obtained in the given condition.
clc;
-M_1=0.1
-M_2=0.2
-V_1=10
-V_2=40
-V=V_1+V_2
+M_1=0.1 //(M)
+M_2=0.2 //(M)
+V_1=10 //(ml)
+V_2=40 //(ml)
+V=V_1+V_2 //(ml)
m_eq=(M_1*V_1)+(M_2*V_2*2) //mgm. equivalents of [H3O+]
-C_1=m_eq/V //[H3O+]
+C_1=m_eq/V //[H3O+] //(M)
pH=-log10(C_1)
disp(pH,'pH of the given solution')
+//Answer given in the book(pH=4.685) is wrong
diff --git a/3428/CH23/EX14.23.22/Ex14_23_22.sce b/3428/CH23/EX14.23.22/Ex14_23_22.sce
index 32f3b36a6..c3db5aa20 100644
--- a/3428/CH23/EX14.23.22/Ex14_23_22.sce
+++ b/3428/CH23/EX14.23.22/Ex14_23_22.sce
@@ -1,8 +1,11 @@
//Section-14,Example-6,Page no.-PC.114
//To calculate the pH of 10^-8 M HCl solution.
clc;
+C=10^-8 //(M) Concentration of HCl solution
k_w=10^-14
-x=9.5*10^-8
-C_1=10^-8+x
+x1=(-C+sqrt((C)^2-(4*1*(-k_w))))/2 //(M) Concentration of OH-
+x2=(-C-sqrt((C)^2+(4*1*(-k_w))))/2 //(M) Concentration of OH-
+//since value of x2 is complex so it is rejected.
+C_1=C+x1 //(M) Concentration of (H3O+)
pH=-log10(C_1)
disp(pH,'pH of the given solution')
diff --git a/3428/CH23/EX14.23.23/Ex14_23_23.sce b/3428/CH23/EX14.23.23/Ex14_23_23.sce
index ea1a8508b..53224b6ae 100644
--- a/3428/CH23/EX14.23.23/Ex14_23_23.sce
+++ b/3428/CH23/EX14.23.23/Ex14_23_23.sce
@@ -5,5 +5,5 @@ pKa=3.08
Ka=10^(-pKa)
x1=(-Ka+sqrt((Ka)^2+(4*0.01*Ka)))/2
x2=(-Ka-sqrt((Ka)^2+(4*0.01*Ka)))/2 //neglected
-pH=-log10(x2)
+pH=-log10(x1)
disp(pH,'pH of the given solution')
diff --git a/3428/CH23/EX14.23.25/Ex14_23_25.sce b/3428/CH23/EX14.23.25/Ex14_23_25.sce
index d66e1afac..3f7a15338 100644
--- a/3428/CH23/EX14.23.25/Ex14_23_25.sce
+++ b/3428/CH23/EX14.23.25/Ex14_23_25.sce
@@ -2,7 +2,7 @@
//To estimate the pH of 0.01 M CH3COONa.
clc;
pK_w=14
-B=0.01
+B=0.01 //(M)
pK_a=-log10(1.8*10^-5)
pH=(1/2*pK_w)+(1/2*log10(B))+(1/2*pK_a)
disp(pH,'pH of given solution of CH3COONa')
diff --git a/3428/CH23/EX14.23.26/Ex14_23_26.sce b/3428/CH23/EX14.23.26/Ex14_23_26.sce
index bd8cf4310..443e96eb1 100644
--- a/3428/CH23/EX14.23.26/Ex14_23_26.sce
+++ b/3428/CH23/EX14.23.26/Ex14_23_26.sce
@@ -3,7 +3,7 @@
clc;
K_a=1.75*10^-5
pK_a=-log10(K_a)
-[CH_3COOH]=(1000/(60*100))
-[CH_3COONa]=((1.5*1000)/(82*100))
+[CH_3COOH]=(1000/(60*100)) //moldm^-3
+[CH_3COONa]=((1.5*1000)/(82*100)) //moldm^-3
pH=(pK_a+ (log10([CH_3COONa]/[CH_3COOH])))
disp(pH,'pH of the given solution')
diff --git a/3428/CH23/EX14.23.27/Ex14_23_27.sce b/3428/CH23/EX14.23.27/Ex14_23_27.sce
index c494a9345..8728c5de9 100644
--- a/3428/CH23/EX14.23.27/Ex14_23_27.sce
+++ b/3428/CH23/EX14.23.27/Ex14_23_27.sce
@@ -1,19 +1,19 @@
//Section-14,Example-2,Page no.-PC.126
clc;
-CH_3COONa_1=0.01
-CH_3COOH_1=0.1
+CH_3COONa_1=0.01 //moldm^-3
+CH_3COOH_1=0.1 //moldm^-3
K_a=1.75*10^-5
pK_a=-log10(K_a)
pH1=pK_a +(log10(CH_3COONa_1/CH_3COOH_1))
disp(pH1,'pH of the given buffer solution')
-HCl=0.0002
-CH_3COONa_2=0.01+0.0002
-CH_3COOH_2=0.1-0.002
+HCl=0.0002 //moles
+CH_3COONa_2=0.01+0.0002 // moldm^-3
+CH_3COOH_2=0.1-0.002 //moldm^-3
pH2=pK_a +(log10(CH_3COONa_2/CH_3COOH_2))
disp(pH2,'pH of the solution after addition of HCl')
-C_1=pH1-pH2 //change in pH
-CH_3COONa_3=0.01+0.002
-CH_3COOH_3=0.1-0.002
+C_1=pH1-pH2 //change in pH (M)
+CH_3COONa_3=0.01+0.002 //moldm^-3
+CH_3COOH_3=0.1-0.002 //moldm^-3
pH3=pK_a +(log10(CH_3COONa_3/CH_3COOH_3))
pH4=pH1-pH3 //change in pH
disp(pH4,'Required pH')
diff --git a/3428/CH23/EX14.23.30/Ex14_23_30.sce b/3428/CH23/EX14.23.30/Ex14_23_30.sce
index 157ef4c65..47a2f1098 100644
--- a/3428/CH23/EX14.23.30/Ex14_23_30.sce
+++ b/3428/CH23/EX14.23.30/Ex14_23_30.sce
@@ -1,10 +1,10 @@
//Section-14,Example-2,Page no.-PC.129
//To find the Molarity of given sulphuric acid solution.
clc;
-N_T=0.1354
-V_T=42.20
-V_S=50.00
+N_T=0.1354 //(N)
+V_T=42.20 //(ml)
+V_S=50.00 //(ml)
//N_S=N_H_2SO_4(let) and M_S=M_H_2SO_4
-N_S=(N_T*V_T)/V_S
-M_S=(N_S/2)
+N_S=(N_T*V_T)/V_S //(N)
+M_S=(N_S/2) //(M)
disp(M_S,'Molarity of H_2SO_4')
diff --git a/3428/CH23/EX14.23.4/Ex14_23_4.sce b/3428/CH23/EX14.23.4/Ex14_23_4.sce
index 75861f586..798ba3942 100644
--- a/3428/CH23/EX14.23.4/Ex14_23_4.sce
+++ b/3428/CH23/EX14.23.4/Ex14_23_4.sce
@@ -1,12 +1,19 @@
//Section-14,Example-2,Page no.-PC.75
//To calculate equilibrium composition of reaction mixture
clc;
-a_N2=1.00-x
-a_H2=3.00-(3*x)
-a_NH_3=2*x
+//a_N2=1.00-x //Equilibrium partial pressure of N_2(bar)
+//a_H2=3.00-(3*x) //Equilibrium partial pressure of H_2(bar)
+//a_NH_3=2*x //Equilibrium partial pressure of NH(bar)
//K=(2*x^2)/((1.00-x)*(3.00-3*x)^3)=977
x_1=(163.416+sqrt((163.416)^2-(4*81.208*81.208)))/(2*81.208)
x_2=(163.416-sqrt((163.416)^2-(4*81.208*81.208)))/(2*81.208)
-p_N2=1-x_2
-p_H2=3*(1-x_2)
-p_NH3=2*x_2
+disp(x_1,'1st value of K')
+disp(x_2,'2nd value of K')
+//since x_2<1,it is accepted as the value of x.
+p_N2=1-x_2 //bar
+disp(p_N2,'Equilibrium composition of N2(bar)')
+p_H2=3*(1-x_2) //bar
+disp(p_H2,'Equilibrium composition of H2(bar)')
+p_NH3=2*x_2 //bar
+disp(p_NH3,'Equilibrium composition of NH3(bar)')
+// It can be concluded that product NH3 dominate at equilibrium.
diff --git a/3428/CH23/EX14.23.7/Ex14_23_7.sce b/3428/CH23/EX14.23.7/Ex14_23_7.sce
index 87f2a4e84..a2eed29b4 100644
--- a/3428/CH23/EX14.23.7/Ex14_23_7.sce
+++ b/3428/CH23/EX14.23.7/Ex14_23_7.sce
@@ -1,11 +1,11 @@
//Section-14,Example-1,Page no.-PC.80
//To calculate K_p at 1000 K
clc;
-T_1=925
-T_2=1000
-K_p925=18.5
-dl_H=-71.09*10^3
-R=8.314
+T_1=925 //Kelvin
+T_2=1000 //Kelvin
+K_p925=18.5 //K_p at 925 K
+dl_H=-71.09*10^3 //kJmol^-1
+R=8.314 //JK^-1mol^-1
//ln(K_p1000)/(K_p925)=(dl_H/R)*((1/T_1)-(1/T_2))
K=((dl_H)/R)*((1/T_1)-(1/T_2))
K_p1000=(%e^(K))*18.5
diff --git a/3428/CH23/EX14.23.9/Ex14_23_9.sce b/3428/CH23/EX14.23.9/Ex14_23_9.sce
index 9d2925809..927bbbd96 100644
--- a/3428/CH23/EX14.23.9/Ex14_23_9.sce
+++ b/3428/CH23/EX14.23.9/Ex14_23_9.sce
@@ -1,6 +1,6 @@
//Section-14,Example-4,Page no.-PC.82
//To calculate the solubility of Ag_2CrO_4.
clc;
-K_sp=(9*10^-12)/4
-S=(K_sp)^(1/3)
+K_sp=(9*10^-12)
+S=(K_sp/4)^(1/3)
disp(S,'Solubility product of Ag_2CrO_4(mol/dm^3)')