diff options
author | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
commit | f35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch) | |
tree | eb72842d800ac1233e9d890e020eac5fd41b0b1b /3428/CH21 | |
parent | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff) | |
download | Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2 Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip |
updated the code
Diffstat (limited to '3428/CH21')
-rw-r--r-- | 3428/CH21/EX14.21.1/Ex14_21_1.sce | 10 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.10/Ex14_21_10.sce | 6 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.11/Ex14_21_11.sce | 6 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.12/Ex14_21_12.sce | 6 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.13/Ex14_21_13.sce | 20 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.14/Ex14_21_14.sce | 12 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.15/Ex14_21_15.sce | 12 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.16/Ex14_21_16.sce | 10 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.17/Ex14_21_17.sce | 12 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.18/Ex14_21_18.sce | 16 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.19/Ex14_21_19.sce | 24 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.2/Ex14_21_2.sce | 10 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.3/Ex14_21_3.sce | 8 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.4/Ex14_21_4.sce | 4 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.6/Ex14_21_6.sce | 8 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.7/Ex14_21_7.sce | 8 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.8/Ex14_21_8.sce | 4 | ||||
-rw-r--r-- | 3428/CH21/EX14.21.9/Ex14_21_9.sce | 3 |
18 files changed, 93 insertions, 86 deletions
diff --git a/3428/CH21/EX14.21.1/Ex14_21_1.sce b/3428/CH21/EX14.21.1/Ex14_21_1.sce index 5147f322f..0fdcd9a5e 100644 --- a/3428/CH21/EX14.21.1/Ex14_21_1.sce +++ b/3428/CH21/EX14.21.1/Ex14_21_1.sce @@ -2,10 +2,10 @@ //To find the temperature at which pressure of gas will reach the bursting value.
clc;
//PV=nRT
-P=10
-V=(10^-3)*(1/10^-3)
-n=((5*10^-3)/30)
-R=0.0821
+P=10 //atm
+V=(10^-3)*(1/10^-3) //L
+n=((5*10^-3)/30) //mol
+R=0.0821 //(LatmK^-1mol^-1)
T=((P*V)/(n*R))
disp(T,'Required temperature(K)')
-
+//Answer given in the book T=730.9 K is wrong.
diff --git a/3428/CH21/EX14.21.10/Ex14_21_10.sce b/3428/CH21/EX14.21.10/Ex14_21_10.sce index 5ddefab2b..a14acf6e2 100644 --- a/3428/CH21/EX14.21.10/Ex14_21_10.sce +++ b/3428/CH21/EX14.21.10/Ex14_21_10.sce @@ -3,8 +3,8 @@ clc;
//v_mp=sqrt((2*K*T)/m)
//sqrt((2*K*T_1)/m)=2*((2*K*T_2)/m)
-T_2=293
-T_1=2^2*(T_2)
+T_2=293 //K
+T_1=2^2*(T_2) //K
disp(T_1,'Required temperature(K)')
-T_1_deg=T_1-273
+T_1_deg=T_1-273 //K
disp(T_1_deg,'Required temperature(degree celius)')
diff --git a/3428/CH21/EX14.21.11/Ex14_21_11.sce b/3428/CH21/EX14.21.11/Ex14_21_11.sce index fc08418a4..a5cfdbb08 100644 --- a/3428/CH21/EX14.21.11/Ex14_21_11.sce +++ b/3428/CH21/EX14.21.11/Ex14_21_11.sce @@ -1,9 +1,9 @@ //Section-14,Example-7,Page no.-PC.17
//To find the ratio of the rates of effusion of neon gas to that of helium gas at same temperature and pressure.
clc;
-M_He=4
-M_Ne=20
+M_He=4 //g/mol(molecular weight of He gas)
+M_Ne=20 //g/mol(molecular weight of Ne gas)
//r=r_Ne/r_He
r=sqrt((M_He)/(M_Ne))
-disp(r,'Required ratio')
+disp(r,'Required ratio of the rates of effusion')
diff --git a/3428/CH21/EX14.21.12/Ex14_21_12.sce b/3428/CH21/EX14.21.12/Ex14_21_12.sce index 7576cce46..f61e1e028 100644 --- a/3428/CH21/EX14.21.12/Ex14_21_12.sce +++ b/3428/CH21/EX14.21.12/Ex14_21_12.sce @@ -2,9 +2,9 @@ //To find Molecular formula of Hydrocarbon.
clc;
//(r(hydrocarbon)/r(CH_4))=(M(CH_4)/M(hydrocarbon))
-M_CH4=16
-r_hc=1
-r_CH4=2
+M_CH4=16 //g/mol(molecular weight of CH4
+r_hc=1 //rate of effusion of hydrocarbon
+r_CH4=2 //rate of effusion of CH4
M_hc=(16/(1/2)^2)
disp(M_hc,'Molecular weight of hydrocarbon(g/mol)')
//The hydrocarbon formula may be (C_4H_10) which has a molecular weight of 58g/mol.
diff --git a/3428/CH21/EX14.21.13/Ex14_21_13.sce b/3428/CH21/EX14.21.13/Ex14_21_13.sce index 2da8e03a3..828158df5 100644 --- a/3428/CH21/EX14.21.13/Ex14_21_13.sce +++ b/3428/CH21/EX14.21.13/Ex14_21_13.sce @@ -1,18 +1,22 @@ //Section-14,Example-1,Page no.-PC.21
//To calculate collision number,collision frequency and mean free path for oxygen at 298K and 1 atm pressure.
clc;
-M=((32*10^-3)/(6.023*10^23))
+M_w=32*10^-3 //(kg/mol) molecular weight of oxygen
+N_A=6.023*10^23 // Avogadro no.(mol^-1)
+M=((M_w)/(N_A))
disp(M,'Mass of one oxygen molecule(kg)')
//N=P/(R*T)
-N=(1*6.023*10^23*10^3)/(0.0821*298)
+P=1 //atm
+R=0.0821 //litreatmK^-1mol^-1
+T=298 //K
+N=(P*N_A*10^3)/(R*T)
disp(N,'No.of O_2 molecules per m^3')
-R=8.314
-T=298
-m=32*10^-3
-v_avg=sqrt((8*R*T)/(%pi*m))
+R_1=8.314 //kgm^2K^-1mol^-1
+m=32*10^-3 //kgmol^-1
+v_avg=sqrt((8*R_1*T)/(%pi*m)) //ms^-1
disp(v_avg,'Average velocity of O2 molecule(ms^-1)')
-sig=3.6*10^-10
-Z_1=sqrt(2)*pi*(sig)^2*v_avg*N
+sig=3.6*10^-10 //m
+Z_1=sqrt(2)*%pi*(sig)^2*v_avg*N
disp(Z_1,'Collision number(collisions per sec)')
Z_11=(1/2)*(Z_1*N)
disp(Z_11,'Collision frequency(collisions s^-1 m^-3)')
diff --git a/3428/CH21/EX14.21.14/Ex14_21_14.sce b/3428/CH21/EX14.21.14/Ex14_21_14.sce index 7cf843fe6..f1a7c6028 100644 --- a/3428/CH21/EX14.21.14/Ex14_21_14.sce +++ b/3428/CH21/EX14.21.14/Ex14_21_14.sce @@ -2,11 +2,11 @@ //To calculate the pressure exerted using the Vanderwalls equation.
clc;
//(P+((a*n^2)/V^2)*(V-(n*b))=n*R*T
-n=10
-R=8.314
-T=298
-V=25*10^-3
-b=0.037*10^-3
-a=0.417
+n=10 //moles
+R=8.314 //Nmk^-1mol^-1
+T=298 //K
+V=25*10^-3 //m^3
+b=0.037*10^-3 //m^3mol^-1
+a=0.417 //Nm^4mol^-2
P=((n*R*T)/(V-(n*b))-((a*n^2)/(V^2)))
disp(P,'Required pressure(Nm^-2)')
diff --git a/3428/CH21/EX14.21.15/Ex14_21_15.sce b/3428/CH21/EX14.21.15/Ex14_21_15.sce index 8e2672cdb..56cfb492b 100644 --- a/3428/CH21/EX14.21.15/Ex14_21_15.sce +++ b/3428/CH21/EX14.21.15/Ex14_21_15.sce @@ -1,13 +1,13 @@ //Section-14,Example-2,Page no.-PC.30
//To calculate pressure exerted using ideal gas equation and Vanderwalls equation.
clc;
-n=5
-R=8.314
-T=300
-V=1*10^-3
+n=5 //moles
+R=8.314 //NmK^-1mol^-1
+T=300 //K
+V=1*10^-3 //m^3
P_1=((n*R*T)/V)
disp(P_1,'Required pressure using ideal gas equation(Nm^-2)')
-a=0.1378
-b=0.0318*10^-3
+a=0.1378 //Nm^4mol^-2
+b=0.0318*10^-3 //m^3mol^-1
P_2=(((n*R*T)/(V-n*b))-((a*n^2)/(V^2)))
disp(P_2,'Required pressure using vanderwalls equation(Nm^-2)')
diff --git a/3428/CH21/EX14.21.16/Ex14_21_16.sce b/3428/CH21/EX14.21.16/Ex14_21_16.sce index 58c29edc0..888ee8a49 100644 --- a/3428/CH21/EX14.21.16/Ex14_21_16.sce +++ b/3428/CH21/EX14.21.16/Ex14_21_16.sce @@ -4,12 +4,12 @@ clc; //(P+(a-V^2))*(V-b)=R*T
v_1=(2520+sqrt(((2520)^2)-4*(10^6)*0.2279))/(2*10^6)
v_2=(2520-sqrt(((2520)^2)-4*(10^6)*0.2279))/(2*10^6)
-R=8.314
-T=298
-P=10^6
+R=8.314 //NmK^-1mol^-1
+T=298 //K
+P=10^6 //N/m^2
V=((R*T)/P)
disp(V,'Volume occupied according to Vanderwalls equation(m^3)')
-a=0.2279
-b=0.0428*10^-3
+a=0.2279 //Nm^4mol^-2
+b=0.0428*10^-3 //m^3mol^-1
T_B=(a/(R*b))
disp(T_B,'Boyle`s temperature for methane gas(K)')
diff --git a/3428/CH21/EX14.21.17/Ex14_21_17.sce b/3428/CH21/EX14.21.17/Ex14_21_17.sce index 5de637d7f..511388b60 100644 --- a/3428/CH21/EX14.21.17/Ex14_21_17.sce +++ b/3428/CH21/EX14.21.17/Ex14_21_17.sce @@ -1,14 +1,14 @@ //Section-14,Example-4,Page no.-PC.31
//To calculate pressure using ideal gas equation and vanderwall`s gas equation.
clc;
-n=12
-R=0.0821
-T=298
-V=10.0
+n=12 //moles
+R=0.0821 //Latm/molK
+T=298 //K
+V=10.0 //L
P_1=((n*R*T)/V)
disp(P_1,'Pressure from ideal gas equation(atm)')
-a=1.49
-b=0.0399
+a=1.49 //atm/mol^2
+b=0.0399 //L/mol
P_2=(((n*R*T)/(V-(n*b)))-((a*n^2)/(V^2)))
disp(P_2,'Pressure from Vander walls gas equation(atm)')
diff --git a/3428/CH21/EX14.21.18/Ex14_21_18.sce b/3428/CH21/EX14.21.18/Ex14_21_18.sce index d8f1e016b..33b79814e 100644 --- a/3428/CH21/EX14.21.18/Ex14_21_18.sce +++ b/3428/CH21/EX14.21.18/Ex14_21_18.sce @@ -1,15 +1,17 @@ //Section-14,Example-5,Page no.-PC.31
//To calculate volume using Ideal gas equation and vander walls equation
clc;
-n=3
-R=0.0821
-T=373
-P=50
+n=3 //mol
+R=0.0821 //Latm/molK
+T=373 //K
+P=50 //atm
V_1=((n*R*T)/P)
disp(V_1,'Volume according to Ideal gas equation(L)')
-a=1.36
-b=0.0318
-V_2=((n*R*T)/(P+((a*n^2)/V^2)))
+a=1.36 //L^2atm/mol^2
+b=0.0318 //L/mol
+V_2=((n*R*T)/(P+((a*n^2/V_1^2))))
disp(V_2,'Volume according to Vanderwall`s gas equation(L)')
+//Answer in the book(V_2=1.81 L)is wrong.
+
diff --git a/3428/CH21/EX14.21.19/Ex14_21_19.sce b/3428/CH21/EX14.21.19/Ex14_21_19.sce index 929824528..c13f0b2a8 100644 --- a/3428/CH21/EX14.21.19/Ex14_21_19.sce +++ b/3428/CH21/EX14.21.19/Ex14_21_19.sce @@ -1,16 +1,16 @@ //Section-14,Example-6,Page no.-PC.32
//To calculate moles of ammonia.
clc;
-P=20
-V=7.0
-R=0.0821
-T=373
-n=((P*V)/(R*T))
-a=4.17
-b=0.0371
-n_1=((P+((a*n^2)/V^2))*(V-(n*b)))/(R*T)
-n_2=((P+((a*n_1^2)/V^2))*(V-(n_1*b)))/(R*T)
-n_3=((P+((a*n_2^2)/V^2))*(V-(n_2*b)))/(R*T)
-n_4=((P+((a*n_3^2)/V^2))*(V-(n_3*b)))/(R*T)
-disp(n_4,'Moles of ammonia that wil occupy 7.0L at 20 atm and 100 degree C)
+P=20 //atm
+V=7.0 //L
+R=0.0821 //Latm/molK
+T=373 //K
+n=((P*V)/(R*T)) //mol
+a=4.17 //L^2atm/mol^2
+b=0.0371 //L/mol
+n_1=((P+((a*n^2)/V^2))*(V-(n*b)))/(R*T) //mol
+n_2=((P+((a*n_1^2)/V^2))*(V-(n_1*b)))/(R*T) //mol
+n_3=((P+((a*n_2^2)/V^2))*(V-(n_2*b)))/(R*T) //mol
+n_4=((P+((a*n_3^2)/V^2))*(V-(n_3*b)))/(R*T) //mol
+disp(n_4,'Moles of ammonia that wil occupy 7.0L at 20 atm and 100 degree C')
diff --git a/3428/CH21/EX14.21.2/Ex14_21_2.sce b/3428/CH21/EX14.21.2/Ex14_21_2.sce index 0c4b82950..53754e614 100644 --- a/3428/CH21/EX14.21.2/Ex14_21_2.sce +++ b/3428/CH21/EX14.21.2/Ex14_21_2.sce @@ -2,11 +2,11 @@ //To calculate the number of gas molecules left.
clc;
//PV=nRT
-P=(10^-5*(1/760))
-V=(10^-3*(1/1000))
-R=0.0821
-T=298
-n=((P*V)/(R*T))
+P=(10^-5*(1/760)) //atm
+V=(10^-3*(1/1000)) //L
+R=0.0821 //LatmK^-1mol^-1
+T=298 //K
+n=((P*V)/(R*T)) //moles
N_a=6.023*10^23 //1 mole gas=6.023*10^23 molecules
N=n*N_a
disp(N,'No. of gas molecules left')
diff --git a/3428/CH21/EX14.21.3/Ex14_21_3.sce b/3428/CH21/EX14.21.3/Ex14_21_3.sce index 9b11d0c0a..a37af92fb 100644 --- a/3428/CH21/EX14.21.3/Ex14_21_3.sce +++ b/3428/CH21/EX14.21.3/Ex14_21_3.sce @@ -1,10 +1,10 @@ //Section-14,Example-3,Page no.-PC.8
//To find whether the tank will blow up before it melts.
clc;
-P_1=200
-T_1=298
-T_2=1808
+P_1=200 //atm
+T_1=298 //K
+T_2=1808 //K
//(P_1/T_1)=(P_2/T_2)
-P_2=(P_1/T_1)*T_2
+P_2=(P_1/T_1)*T_2 //atm
disp(P_2,'Final pressure in the tank(atm)')
//since P_2>700 atm,tank will blow up.
diff --git a/3428/CH21/EX14.21.4/Ex14_21_4.sce b/3428/CH21/EX14.21.4/Ex14_21_4.sce index 9c15a02c9..a277d2e65 100644 --- a/3428/CH21/EX14.21.4/Ex14_21_4.sce +++ b/3428/CH21/EX14.21.4/Ex14_21_4.sce @@ -1,8 +1,8 @@ //Section-14,Example-4,Page no.-PC.8
//To determine how many times faster will He initially leak through a pinhole in the container.
clc;
-M_2=28
-M_1=4
+M_2=28 //gmol^-1
+M_1=4 //gmol^-1
//r=r_1/r_2
r=sqrt(M_2/M_1)
disp(r,'r_1/r_2')
diff --git a/3428/CH21/EX14.21.6/Ex14_21_6.sce b/3428/CH21/EX14.21.6/Ex14_21_6.sce index 2601b01b6..4847d0b8d 100644 --- a/3428/CH21/EX14.21.6/Ex14_21_6.sce +++ b/3428/CH21/EX14.21.6/Ex14_21_6.sce @@ -2,9 +2,9 @@ //To calculate temperature at which rms velocity of hydrogen gas =100 ms^-1
clc;
//v_rms=sqrt((3*R*T)/M)
-v_rms=100
-R=8.314
-M=2*10^-3
-T=((v_rms^2*M)/(3*R))
+v_rms=100 //ms^-1
+R=8.314 //JK^-1mol^-1
+M=2*10^-3 //kgmol^-1
+T=((v_rms^2*M)/(3*R)) //K
disp(T,'Required temperature(K)')
diff --git a/3428/CH21/EX14.21.7/Ex14_21_7.sce b/3428/CH21/EX14.21.7/Ex14_21_7.sce index 578eaf75a..d79e1479b 100644 --- a/3428/CH21/EX14.21.7/Ex14_21_7.sce +++ b/3428/CH21/EX14.21.7/Ex14_21_7.sce @@ -2,9 +2,9 @@ //To calculate temperature at which v_mp of oxygen= v_mp of hydrogen
clc;
//v_mp=sqrt((2*R*T)/M)
-M_O2=32
-M_H2=2
-T_H2=298
+M_O2=32 //mol^-1
+M_H2=2 //mol^-1
+T_H2=298 //K
//v_mp(O2)/v_mp(H2)=(T_O2/M_O2)/(T_H2/M_H2)=1
-T_O2=T_H2*(M_O2/M_H2)
+T_O2=T_H2*(M_O2/M_H2) //K
disp(T_O2,'Required temperature(K)')
diff --git a/3428/CH21/EX14.21.8/Ex14_21_8.sce b/3428/CH21/EX14.21.8/Ex14_21_8.sce index 3e456d40e..537915e6a 100644 --- a/3428/CH21/EX14.21.8/Ex14_21_8.sce +++ b/3428/CH21/EX14.21.8/Ex14_21_8.sce @@ -4,7 +4,7 @@ clc; //v_avg=sqrt((8*K*T)/pi*m)
//v_avgHe=sqrt((8*K*330)/(pi*4))
//v_avgN_2=sqrt((8*K*T_2)/(pi*28))
-T_1=330
+T_1=330 //(K)
K=1 //K=1(let)
-T_2=(8*K*T_1*%pi*28)/(%pi*4*8*K)
+T_2=(8*K*T_1*%pi*28)/(%pi*4*8*K) //(K)
disp(T_2,'Required temperature(K)')
diff --git a/3428/CH21/EX14.21.9/Ex14_21_9.sce b/3428/CH21/EX14.21.9/Ex14_21_9.sce index 98c865954..24f4ccd7f 100644 --- a/3428/CH21/EX14.21.9/Ex14_21_9.sce +++ b/3428/CH21/EX14.21.9/Ex14_21_9.sce @@ -3,6 +3,7 @@ clc;
//v_rms=sqrt((3*K*T)/m)
//K=1(let)
+T=200 //(K) Given temperature
K=1
-T_He=(3*K*200*4)/(3*K*2)
+T_He=(3*K*T*4)/(3*K*2)
disp(T_He,'Required temperature(K)')
|