diff options
author | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
commit | f35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch) | |
tree | eb72842d800ac1233e9d890e020eac5fd41b0b1b /3176/CH5/EX5.4 | |
parent | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff) | |
download | Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2 Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip |
updated the code
Diffstat (limited to '3176/CH5/EX5.4')
-rw-r--r-- | 3176/CH5/EX5.4/Ex5_4.sce | 178 |
1 files changed, 89 insertions, 89 deletions
diff --git a/3176/CH5/EX5.4/Ex5_4.sce b/3176/CH5/EX5.4/Ex5_4.sce index ca1fde8d4..c2aff7996 100644 --- a/3176/CH5/EX5.4/Ex5_4.sce +++ b/3176/CH5/EX5.4/Ex5_4.sce @@ -1,89 +1,89 @@ -//Ex5_4
-//Illustration of Adaptive Local Noise Reduction Filtering
-// Version : Scilab 5.4.1
-// Operating System : Window-xp, Window-7
-//Toolbox: Image Processing Design 8.3.1-1
-//Toolbox: SIVP 0.5.3.1-2
-//Reference book name : Digital Image Processing
-//book author: Rafael C. Gonzalez and Richard E. Woods
-
-clc;
-clear;
-close;
-xdel(winsid());
-
-///////////////// Function File /////////////////////
-function [f]=arithmetic_mean(v,m,n)
- w=fspecial('average',m);
- f=imfilter(v,w);
-endfunction
-
-function [f]=geometric_mean1(g,m,n);//gmean1() is used to filter an image using Geometric mean filter
- size1=m;
- q=m*n;
- g=double(g);
- [nr,nc]=size(g);
- temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
- temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=g(1:$,1:$)
- temp=temp+1;
- for i=ceil(size1/2):nr+ceil(size1/2)-1
- for j=ceil(size1/2):nc+ceil(size1/2)-1
- t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
- temp2(i,j)=prod(t);
- end
- end
- temp3=temp2.^(1/q);
- nn=temp3(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)
- f1=nn-1;
- f=mat2gray(f1)
-endfunction
-
-
-///////////////// Main Programm /////////////////////
-A=imread("Ex5_4.tif");
-B = imnoise(A,'gaussian',0,0.01);
-[rw1 ,cl1]=size(B);
-figure;
-ShowImage(B,'Gaussian noise added');
-title('Image with gaussian noise','color','blue','fontsize',4);
-
-///////////////////////////////////// Arithmetical Mean Filter ////////////////////
-m=7;n=7;
-[f]=arithmetic_mean(B,m,n);
-figure,ShowImage(f,'Recovered Image');
-title('Restored Image with Arithmetical Mean Filter','color','blue','fontsize',4);
-
-///////////////////////////////////// Geometric Mean Filter ////////////////////
-m=7;n=7;
-[f]=geometric_mean1(B,m,n);
-figure,ShowImage(f,'Recovered Image');
-title('Restored Image with Geometric Mean Filter','color','blue','fontsize',4);
-
-
-
-////////////////////Adaptive Local Noise Reduction///////////////////////
-B= double(B);
-M=7;
-N=7;
-lvar=zeros([rw1-M+1,cl1-N+1]);
-lmean=zeros([rw1-M+1,cl1-N+1]);
-temp=zeros([rw1-M+1,cl1-N+1]);
-F=zeros([rw1-M+1,cl1-N+1]);
-sz=(rw1-M+1)*(cl1-N+1);
-for i=1:rw1-M+1
- for j=1:cl1-N+1
- temp=B(i:i+(M-1),j:j+(N-1));
- lmean(i,j)=mean(temp);
- lvar(i,j)=mean(temp.*temp)-mean(temp).^2;
- end
-end
-nvar=sum(lvar)/sz;
-lvar=max(lvar,nvar);
-C=B(M/2:rw1-M/2,N/2:cl1-N/2);
-F=nvar./lvar;
-F=F.*(C-lmean);
-F=C-F;
-F=uint8(F);
-figure;
-ShowImage(F,'Restored');
-title('Restored Image using Adaptive Local filter','color','blue','fontsize',4);
+//Ex5_4 +//Illustration of Adaptive Local Noise Reduction Filtering +// Version : Scilab 5.4.1 +// Operating System : Window-xp, Window-7 +//Toolbox: Image Processing Design 8.3.1-1 +//Toolbox: SIVP 0.5.3.1-2 +//Reference book name : Digital Image Processing +//book author: Rafael C. Gonzalez and Richard E. Woods + +clc; +clear; +close; +xdel(winsid()); + +///////////////// Function File ///////////////////// +function [f]=arithmetic_mean(v,m,n) + w=fspecial('average',m); + f=imfilter(v,w); +endfunction + +function [f]=geometric_mean1(g,m,n);//gmean1() is used to filter an image using Geometric mean filter + size1=m; + q=m*n; + g=double(g); + [nr,nc]=size(g); + temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2)); + temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=g(1:$,1:$) + temp=temp+1; + for i=ceil(size1/2):nr+ceil(size1/2)-1 + for j=ceil(size1/2):nc+ceil(size1/2)-1 + t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ; + temp2(i,j)=prod(t); + end + end + temp3=temp2.^(1/q); + nn=temp3(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1) + f1=nn-1; + f=mat2gray(f1) +endfunction + + +///////////////// Main Programm ///////////////////// +A=imread("Ex5_4.tif"); +B = imnoise(A,'gaussian',0,0.01); +[rw1 ,cl1]=size(B); +figure; +ShowImage(B,'Gaussian noise added'); +title('Image with gaussian noise','color','blue','fontsize',4); + +///////////////////////////////////// Arithmetical Mean Filter //////////////////// +m=7;n=7; +[f]=arithmetic_mean(B,m,n); +figure,ShowImage(f,'Recovered Image'); +title('Restored Image with Arithmetical Mean Filter','color','blue','fontsize',4); + +///////////////////////////////////// Geometric Mean Filter //////////////////// +m=7;n=7; +[f]=geometric_mean1(B,m,n); +figure,ShowImage(f,'Recovered Image'); +title('Restored Image with Geometric Mean Filter','color','blue','fontsize',4); + + + +////////////////////Adaptive Local Noise Reduction/////////////////////// +B= double(B); +M=7; +N=7; +lvar=zeros([rw1-M+1,cl1-N+1]); +lmean=zeros([rw1-M+1,cl1-N+1]); +temp=zeros([rw1-M+1,cl1-N+1]); +F=zeros([rw1-M+1,cl1-N+1]); +sz=(rw1-M+1)*(cl1-N+1); +for i=1:rw1-M+1 + for j=1:cl1-N+1 + temp=B(i:i+(M-1),j:j+(N-1)); + lmean(i,j)=mean(temp); + lvar(i,j)=mean(temp.*temp)-mean(temp).^2; + end +end +nvar=sum(lvar)/sz; +lvar=max(lvar,nvar); +C=B(M/2:rw1-M/2,N/2:cl1-N/2); +F=nvar./lvar; +F=F.*(C-lmean); +F=C-F; +F=uint8(F); +figure; +ShowImage(F,'Restored'); +title('Restored Image using Adaptive Local filter','color','blue','fontsize',4);
\ No newline at end of file |